SEARCH

SEARCH BY CITATION

REFERENCES

  • Chao, W. C. and Chang, L.-P. 1992 Development of a four-dimensional variational analysis system using the adjoint method at GLA. Part I: Dynamics. Mon. Weather Rev., 120, 16611673
  • Courtier, P., Thepaut, J.-N. and Hollingsworth, A. 1994 A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc., 120, 13671387
  • Dennis, J. E. and Schnabel, R. B. 1996 Numerical methods for unconstrained optimization and nonlinear equations. Society for Industrial and Applied Mathematics
  • Gill, P. E., Murray, W. and Wright, M. H. 1981 Practical optimization. Academic Press
  • Laroche, S. and Gauthier, P. 1998 A validation of the incremental formulation of 4D variational data assimilation in a nonlinear barotropic flow. Tellus, 50A, 557572
  • Lawless, A. S. 2001 ‘Development of linear models for data assimilation in numerical weather prediction’. PhD thesis, Department of Mathematics, University of Reading
  • Lawless, A. S., Nichols, N. K. and Ballard, S. P. 2003 A comparison of two methods for developing the linearization of a shallow-water model. Q. J. R. Meteorol. Soc., 129, 12371254
  • Lorenc, A.C, Ballard, S. P., Bell, R. S., Ingleby, N. B., Andrews, P. L. F., Barker, D. M., Bray, J. R., Clayton, A. M., Dalby, T., Li, D., Payne, T. J. and Saunders, F. W. 2000 The Met. Office global 3-dimensional variational data assimilation scheme. Q. J. R. Meteorol. Soc., 126, 29913012
  • Navon, I. M. and Legler, D. M. 1987 Conjugate-gradient methods for large-scale minimization in meteorology. Mon. Weather Rev., 115, 14791502
  • Navon, I. M., Zou, X., Derber, J. and Sela, J. 1992 Variational data assimilation with an adiabatic version of the NMC spectral model. Mon. Weather Rev., 120, 14331446
  • Rivest, C., Staniforth, A. and Robert, A. 1994 Spurious resonant response of semi-Lagrangian discretizations to orographic forcing: diagnosis and solution. Mon. Weather Rev., 122, 366376
  • Shanno, D. F. 1978 On the convergence of a new conjugate gradient algorithm. SIAM J. Numer. Anal., 15, 12471257
  • Shanno, D. F. and Phua, K. H. 1980 Remark on algorithm 500—a variable method subroutine for unconstrained nonlinear minimization. ACM Trans. on Mathematical Software, 6, 618622
  • Temperton, C. and Staniforth, A. 1987 An efficient two-time-level semi-Lagrangian semi-implicit integration scheme. Q. J. R. Meteorol. Soc., 113, 10251039
  • Veersé, F. and Thépaut, J.-N. 1998 Multiple-truncation incremental approach for four-dimensional variational data assimilation. Q. J. R. Meteorol. Soc., 124, 18891908
  • Wedin, P.-Å. 1974 ‘On the Gauss-Newton method for nonlinear least squares problems’. Working Paper 24, Institute for Applied Mathematics, Stockholm, Sweden