• Andersson, E., Fisher, M., Munro, R. and McNally, A. 2000 Diagnosis of background errors for radiances and other observable quantities in a variational data assimilation scheme, and the explanation of a case of poor convergence. Q. J. R. Meteorol. Soc., 126, 14551472
  • Buehner, M. 2005 Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Q. J. R. Meteorol. Soc., 131, 10131044
  • Chapnik, B., Desroziers, G., Rabier, F. and Talagrand, O. 2004 Properties and first application of an error-statistics tuning method in variational assimilation. Q. J. R. Meteorol. Soc., 130, 22532275
  • 2006 Diagnosis and tuning of observational error statistics in a quasi-operational data assimilation setting. Q. J. R. Meteorol. Soc., 132, 543565
  • Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M. and Staniforth, A. 1998 The operational CMC-MRB global environmental multiscale (GEM) model. part I: Design considerations and formulation. Mon. Weather Rev., 126, 13731395
  • Derber, J. and Bouttier, F. 1999 A reformulation of the background error covariance in the ECMWF global data assimilation system. Tellus, 51A, 195221
  • Desroziers, G. and Ivanov, S. 2001 Diagnosis and adaptive tuning of observation-error parameters in a variational assimilation. Q. J. R. Meteorol. Soc., 127, 14331452
  • Evensen, G. 1994 Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 1014310162
  • Fisher, M. and Andersson, E. 2001 ‘Developments in 4D-Var and Kalman filtering’. Tech. memo. 347, ECMWF, Reading, UK
  • Gauthier, P., Buehner, M. and Fillion, L. 1998 ‘Background-error statistics modelling in a 3D variational data assimilation scheme.’ Pp. 131145 in Proceedings of workshop on diagnosis of data assimilation systems, 2–4 November 1998, ECMWF, Reading, UK
  • Hollingsworth, A. and Lönnberg, P. 1986 The statistical structure of short-range forecast errors as determined from radiosonde data. Part 1: The wind field. Tellus, 38A, 111136
  • Houtekamer, P. L., Lefaivre, L., Derome, J., Ritchie, H. and Mitchell, H. L. 1996 A system simulation approach to ensemble prediction. Mon. Weather Rev., 124, 12251242
  • Houtekamer, P. L., Mitchell, H. L., Pellerin, G., Buehner, M., Charron, M., Spacek, L. and Hansen, B. 2005 Atmospheric data assimilation with an ensemble Kalman filter: results with real observations. Mon. Weather Rev., 133, 604620
  • Mitchell, H. L. and Houtekamer, P. L. 2000 An adaptive ensemble Kalman filter. Mon. Weather Rev., 128, 416433
  • Parrish, D. F. and Derber, J. C. 1992 The National Meteorological Center's spectral statistical interpolation analysis system. Mon. Weather Rev., 120, 17471763