SEARCH

SEARCH BY CITATION

REFERENCES

  • Anderson, B. D. O. and Moore, J. B. 1979 Optimal filtering. Prentice-Hall, Englewood Cliffs, NJ, USA
  • Andersson, E., Bauer, P., Beljaars, A., Chevallier, F., Hólm, E., Janisková, M., Kållberg, P., Kelly, G., Lopez, P., McNally, A., Moreau, E., Simmons, A. J., Thépaut, J.-N. and Tompkins, A. M. 2005 Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system. Bull. Amer. Meteorol. Soc., 86, 387402
  • Bell, M. J., Martin, M. J. and Nichols, N. K. 2004 Assimilation of data into an ocean model with systematic errors near the equator. Q. J. R. Meteorol. Soc., 130, 873893
  • Balmaseda, M. A., Dee, D. P., Vidard, A. and Anderson, D. L. T. 2006 A multivariate treatment of bias for sequential data assimilation: Application to the tropical oceans. Q. J. R. Meteorol. Soc., 132, in press
  • Bloom, S. C., Takacs, L. L., da Silva, A. M. and Ledvina, D. 1996 Data assimilation using incremental analysis updates. Mon. Weather Rev., 124, 12561271
  • Chepurin, G. A., Carton, J. and Dee, D. P. 2005 Forecast model bias correction in ocean data assimilation. Mon. Weather Rev., 133, 13281342
  • Daley, R. 1992 The lagged innovation covariance: A performance diagnostic for atmospheric data assimilation. Mon. Weather Rev., 120, 178196
  • Dee, D. P 1991 Simplification of the Kalman filter for meteorological data assimilation. Q. J. R. Meteorol. Soc., 117, 365384
  • 2004 ‘Variational bias correction of radiance data in the ECMWF system’. Pp. 97112 in Proceedings of the workshop on assimilation of high-spectral-resolution sounders in NWP, 28 June–1 July 2004, ECMWF, Reading, UK
  • Dee, D. P. and da Silva, A. M. 1998 Data assimilation in the presence of forecast bias. Q. J. R. Meteorol. Soc., 124, 269295
  • Dee, D. P. and Todling, R. 2000 Data assimilation in the presence of forecast bias: The GEOS moisture analysis. Mon. Weather Rev., 128, 32683282
  • Derber, J. C. 1989 A variational continuous assimilation technique. Mon. Weather Rev., 117, 24372446
  • Derber, J. C. and Wu, W.-S. 1998 The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Weather Rev., 126, 22872299
  • Eyre, J. R. 1992 ‘A bias correction scheme for simulated TOVS brightness temperatures’. Technical Memorandum 186, ECMWF, Reading, UK
  • Friedland, B. 1969 Treatment of bias in recursive filtering. IEEE Trans. Autom. Contr., AC-14, 359367
  • Griffith, A. K. and Nichols, N. K. 2000 Adjoint methods in data assimilation for estimating model error. Flow Turbul. Combust., 65, 469488
  • Haimberger, L. 2005 ‘Homogenization of radiosonde temperature time series using ERA-40 analysis feedback information’. ERA-40 Project Report Series No. 23, ECMWF, Reading, UK
  • Harris, B. A. and Kelly, G. 2001 A satellite radiance-bias correction scheme for data assimilation. Q. J. R. Meteorol. Soc., 127, 14531468
  • Hernandez, A., Kelly, G. and Uppala, S. 2004 ‘The TOVS/ATOVS observing system in ERA-40’. ERA-40 Project Report Series No. 18, ECMWF, Reading, UK
  • Joiner, J., Lee, H. T., Strow, L. L., Bhartia, P. K., Hannon, S., Miller, A. J. and Rokke, L. 1998 Radiative transfer in the 9.6µ HIRS ozone channel using col-located SBUV-determined ozone abundances. J. Geophys. Res., 103, 1921319229.
  • Joiner, J. and Rokke, L. 2000 Variational cloud-clearing with TOVS data. Q. J. R. Meteorol. Soc., 126, 725748
  • Kalman, R. 1960 A new approach to linear filtering and prediction problems. Trans. ASME,Ser.D,J.Basic Eng., 82, 3545
  • Lamarque, J.-F., Khattatov, B., Yudin, Y., Edwards, D. P., Gille, J. C., Emmons, L. K., Deeter, M. N., Warner, J., Ziskin, D.C., Francis, G. L., Ho, S., Mao, D., Chen, J. and Drummond, J. R. 2004 Application of a bias estimator for the improved assimilation of Measurements of Pollution in the Troposphere (MOPITT) carbon monoxide retrievals. J. Geophys. Res., 109, D16304, doi: 10.1029/2003JD004466
  • Ljung, L. 1999 System identification: Theory for the user. (2nd ed.) Prentice-Hall, Upper Saddle River, NJ, USA
  • Lomb, N. R. 1976 Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science, 39, 447462
  • McNally, A. P 2004 ‘The assimilation of stratospheric satellite data at ECMWF’. Pp. 103106 in Proceedings of the ECMWF/SPARC workshop on modelling and assimilation for the stratosphere and tropopause, 23–26 June 2003, Reading, UK
  • Ménard, R. and Daley, R. 1996 The application of Kalman smoother theory to the estimation of 4DVAR error statistics. Tellus, 48A, 221237
  • Polavarapu, S., Shepherd, T. G., Rochon, Y. and Ren, S. 2005 Some challenges of middle atmosphere data assimilation. Q. J. R. Meteorol. Soc., 131, 35133527
  • Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. 1992 Numerical Recipes in FORTRAN: The art of scientific computing. (2nd ed.) Cambridge University Press, Cambridge, UK
  • Radakovich, J. D., Bosilovich, M. G., Chern, J.-D., da Silva, A. M., Todling, R., Joiner, J., Wu, M.-L. and Norris, P. 2004 ‘Implementation of coupled skin temperature analysis and bias correction in the NASA/GMAO finite-volume data assimilation system (FvDAS)’. P1.3 in Proceedings of the Eighth AMS Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, 12–15 January 2004, Seattle, WA, USA
  • Radakovich, J. D., Houser, P. R., da Silva, A. M. and Bosilovich, M. G. 2001 ‘Results from global land-surface data assimilation methods’. Pp. 132134 in Proceedings of the Fifth AMS Symposium on Integrated Observing Systems, 14–19 January 2001, Albuquerque, NM, USA
  • Rosmond, T. and Xu, L. 2006 Development of NAVDAS-AR: Non-linear formulation and outer-loop tests. Tellus A, 58, 4558
  • Santer, B. D., Wigley, T. M. L., Simmons, A. J., Kållberg P. W., Kelly, G. A., Uppala, S. M., Ammann, C., Boyle, J. S., Bruggemann, W., Doutriaux, C., Fiorino, M., Mears, C., Meehl, G. A., Sausen, R., Taylor, K. E., Washington, W. M., Wehner, M. F. and Wentz, F. J. 2004 Identification of anthropogenic climate change using a second-generation reanalysis. J. Geophys. Res., 109, D21104, doi: 10.1029/2004JD005075
  • Sasaki, Y. 1970 Some basic formalisms in numerical variational analysis. Mon. Weather Rev., 98, 875883
  • Thépaut, J.-N. 2003 ‘Satellite Data Assimilation in Numerical Weather Prediction: an overview’. Pp. 7595 in Proceedings of the annual seminar on recent developments in data assimilation for atmosphere and ocean, 8–12 September 2003, ECMWF, Reading, UK
  • Trémolet, Y. 2003 ‘Model error in variational data assimilation’. Pp. 361367 in Proceedings of the annual seminar on recent developments in data assimilation for atmosphere and ocean, 8–12 September 2003, ECMWF, Reading, UK
  • Tsyroulnikov, M. D. 2005 Stochastic modelling of model errors: A simulation study. Q. J. R. Meteorol. Soc., 131, 33453371
  • Watts, P. D. and McNally, A. P. 2004 ‘Identification and correction of radiative transfer modelling errors for atmospheric sounders: AIRS and AMSU-A’. Pp. 2338 in Proceedings of the workshop on assimilation of high-spectral-resolution sounders in NWP, 28 June–1 July 2004, ECMWF, Reading, UK
  • Xu, L., Rosmond, T. and Daley, R. 2005 Development of NAVDAS-AR: Formulation and initial tests of the linear problem. Tellus A, 57, 546559
  • Zupanski, D. 1997 A general weak constraint applicable to operational 4DVAR data assimilation. Mon. Weather Rev., 125, 22742292