SEARCH

SEARCH BY CITATION

REFERENCES

  • Benjamin, S. G., Devenyi, D., Weygandt, S. S., Brundage, K. J., Brown, J. M., Grell, G., Kim, D., Schwartz, B. E., Smirnova, T., Smith, T.L. and Manikin, G. S. 2004 An hourly assimilation forecast cycle: The RUC. Mon. Weather Rev., 132, 495518
  • Best, D. and Fisher, N. 1981 The bias of the maximum likelihood estimators of the von Mises–Fisher concentration parameters. Commun. Stat. Simulat. Comput. B, 10, (5), 493502
  • Bougeault, P., Binder, P., Buzzi, A., Dirks, R., Houze, R., Kuettner, J., Smith, R. B., Steinacker, R. and Volkert, H. 2001 The MAP special observing period. Bull. Am. Meteorol. Soc., 82, 433462
  • Candille, G. and Talagrand, O. 2005 Evaluation of probabilistic prediction systems for a scalar variable. Q. J. R. Meteorol. Soc., 131, 21312150
  • Case, J. L., Manobianco, J., Lane, J. E., Immer, C. D. and Merceret, F. J. 2004 An objective technique for verifying sea breezes in high-resolution numerical weather prediction models. Weather and Forecasting, 19, 690705
  • Cleveland, W. S. 1979 Robust locally weighted regression and smoothing scatterplots. J. Amer. Statist. Assoc., 74, 829836
  • Done, J., Davis, C. A. and Weisman, M. 2004 The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmos. Sci. Lett., 5, 110117
  • Ebert, E. and McBride, J. L. 2000 Verification of precipitation in weather systems: Determination of systematic errors. J. Hydrol., 239, 179202
  • Eckel, F. A. and Mass, C. F. 2005 Aspects of effective short-range ensemble forecasting. Weather and Forecasting, 20, 328350
  • Feller, W. 1971 An introduction to probability theory and its applications. Vol. 2, (2nd ed.), John Wiley & Sons, New York, USA
  • Fisher, N. I. 1993 Statistical analysis of circular data, Cambridge University Press, UK
  • Fortin, V., Favre, A.-C. and Saïd, M. 2006 Probabilistic forecasting from ensemble prediction systems: Improving upon the best-member method by using a different weight and dressing kernel for each member. Q. J. R. Meteorol. Soc., 132, 13491369
  • Gneiting, T. and Raftery, A. E. 2004 ‘Strictly proper scoring rules, prediction, and estimation’. Technical Report No. 463, Department of Statistics, University of Washington, Seattle, USA
  • Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T. 2005 Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev., 33, 10981118
  • Gneiting, T., Larson, K., Westrick, K., Genton, M. G. and Aldrich, E. 2006 Calibrated probabilistic forecasting at the Stateline wind energy center: The regime-switching space-time (RST) method. J. Amer. Statist. Assoc., 101, 968979
  • Gradshteyn, I. S. and Ryzhik, I. M. 1994 Table of Integrals, Series, and Products. (5th ed.), Academic Press, New York, USA
  • Grimit, E. P. 2001 ‘Implementation and evaluation of a mesoscale short-range ensemble forecasting system over the Pacific Northwest’. MS thesis, Department of Atmospheric Sciences, University of Washington, Seattle, USA
  • 2004 ‘Probabilistic mesoscale forecast error prediction using short-range ensembles’. PhD dissertation, Department of Atmospheric Sciences, University of Washington, Seattle, USA
  • Grimit, E. P. and Mass, C. F. 2002 Initial results of a mesoscale short-range ensemble system over the Pacific Northwest. Weather and Forecasting, 17, 192205
  • Hamill, T. M., Whitaker, J. S. and Mullen, S. L. 2006 Reforecasts: An important data set for improving weather predictions. Bull. Am. Meteorol. Soc., 87, 3346
  • Hersbach, H. 2000 Decomposition of the continuous ranked probability score for ensemble prediction systems. Weather and Forecasting, 15, 559570
  • Jolliffe, I. T. and Stephenson, D. B. 2003 Forecast verification: A practitioner's guide in atmospheric science. John Wiley & Sons, Chichester, UK
  • Mahrt, L. 1999 Stratified atmospheric boundary layers. Boundary-Layer Meteorol., 90, 375396
  • Mass, C. F., Ovens, D., Westrick, K. and Colle, B. A. 2002 Does increasing horizontal resolution produce more skillful forecasts? Bull. Am. Meteorol. Soc., 83, 407430
  • Mass, C. F., Albright, M., Ovens, D., Steed, R., MacIver, M., Grimit, E., Eckel, T., Lamb, B., Vaughan, J., Westrick, K., Storck, P., Colman, B., Hill, C., Maykut, N., Gilroy, M., Ferguson, S. A., Yetter, J., Sierchio, J. M., Bowman, C., Stender, R., Wilson, R. and Brown, W. 2003 Regional environmental prediction over the Pacific Northwest. Bull. Am. Meteorol. Soc., 84, 13531366
  • Matheson, J. E. and Winkler, R. L. 1976 Scoring rules for continuous probability distributions. Management Sci., 22, 10871096
  • Nachamkin, J. E. 2004 Mesoscale verification using meteorological composites. Mon. Weather Rev., 132, 941955
  • Pocernich, M. 2006 ‘The verification package’. R project for statistical computing, reference manual for contributed packages. Available atwww.cran.r-project.org/
  • Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M. 2005 Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev., 133, 11551174
  • Rife, D. L. and Davis, C. A. 2005 Verification of temporal variations in mesoscale numerical wind forecasts. Mon. Weather Rev., 133, 33683381
  • Rife, D. L., Davis, C. A., Liu, Y. and Warner, T. T. 2004 Predictability of low-level winds by mesoscale meteorological models. Mon. Weather Rev., 132, 25532569
  • Roulston, M. S. and Smith, L. A. 2002 Evaluating probabilistic forecasts using information theory. Mon. Weather Rev., 130, 16531660
  • Selten, R. 1998 Axiomatic characterization of the quadratic scoring rule. Experimental Economics, 1, 4362
  • Stoelinga, M. T., Hobbs, P. V., Mass, C. F., Locatelli, J. D., Colle, B.A., Houze Jr., R.A., Rangno, A. L., Bond, N. A., Smull, B. F., Rasmussen, R. M., Thompson, G. and Colman, B. R. 2003 Improvement of microphysical parameterization through observational verification experiment. Bull. Am. Meteorol. Soc., 84, 18071826
  • Székely, G. J. 2003 ‘ε-Statistics: The energy of statistical samples’. Technical Report No. 2003–16, Department of Mathematics and Statistics, Bowling Green State University, Ohio, USA
  • Toth, Z., Talagrand, O., Candille, G. and Zhu, Y. 2003 ‘Probability and ensemble forecasts’. Pp. 137163 in Forecast verification: A practitioner's guide in atmospheric science. Eds. I. T. Jolliffe and D. B. Stephenson. John Wiley & Sons, Chichester, UK
  • Unger, D. A. 1985 ‘A method to estimate the continuous ranked probability score’. Pp. 206213 in Proceedings of the Ninth Conference on probability and statistics, Virginia Beach, USA. American Meteorological Society, Boston, USA
  • Wang, X. and Bishop, C. H. 2005 Improvement of ensemble reliability with a new dressing kernel. Q. J. R. Meteorol. Soc., 131, 965986
  • Wilks, D. S. 2006 Statistical methods in the atmospheric sciences, Elsevier Academic Press, Amsterdam, The Netherlands
  • Zhang, D.-L. and Zheng, W.-Z. 2004 Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J. Appl. Meteorol., 43, 157169