This paper develops a ridge procedure for structural equation modelling (SEM) with ordinal and continuous data by modelling the polychoric/polyserial/product-moment correlation matrix R. Rather than directly fitting R, the procedure fits a structural model to Ra=R+aI by minimizing the normal distribution-based discrepancy function, where a > 0. Statistical properties of the parameter estimates are obtained. Four statistics for overall model evaluation are proposed. Empirical results indicate that the ridge procedure for SEM with ordinal data has better convergence rate, smaller bias, smaller mean square error, and better overall model evaluation than the widely used maximum likelihood procedure.