SEARCH

SEARCH BY CITATION

Keywords:

  • TNFα;
  • RANK;
  • CD11b;
  • osteoclastogenesis;
  • erosive arthritis

Abstract

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. MATERIALS AND METHODS
  5. RESULTS
  6. DISCUSSION
  7. Acknowledgements
  8. REFERENCES

To address the controversy of whether TNFα can compensate for RANKL in osteoclastogenesis in vivo, we used a TNFα-induced animal model of inflammatory arthritis and blocked RANKL/RANK signaling. TNFα increased osteoclast precursors available for RANK-dependent osteoclastogenesis. RANK signaling is not required for the TNFα-stimulated increase in CD11bhi osteoclast precursors but is essential for mature osteoclast formation.

Introduction: Although critical roles of TNFα in inflammatory arthritis and RANKL in bone resorption have been firmly established, a central controversy remains about the extent to which TNFα can compensate for RANKL during osteoclastogenesis and the stage at which RANK signaling is required for osteoclastogenesis. Here, we used the human TNFα transgenic mouse model (TNF-Tg) of erosive arthritis to determine if there are both RANK-dependent and -independent stages of osteoclastogenesis in TNFα-induced erosive arthritis.

Materials and Methods: Osteoclastogenesis and osteoclast precursor (OCP) frequency were analyzed using histology, fluorescence-activated cell sorting (FACS), and cell culture from (1) TNF-Tg mice treated with the RANKL antagonist, RANK:Fc, or (2) TNF-Tg × RANK−/− mice generated by crossing TNF-Tg mice with RANK−/− mice.

Results: Treatment of TNF-Tg mice, which have increased OCPs in their spleens, with RANK:Fc dramatically reduced osteoclast numbers on the surface of their arthritic joints and within their bones, but did not decrease CD11bhi OCP numbers in their spleens. Long-term RANK:Fc administration alleviated joint erosion. Furthermore, TNF-Tg × RANK−/− mice had severe osteopetrosis, no osteoclasts, and no joint erosion, but increased CD11bhi precursor numbers that failed to form mature osteoclasts in vitro.

Conclusion: RANK signaling is essential for mature osteoclast formation in TNFα-mediated inflammatory arthritis but not for the TNFα-induced increase in CD11bhi OCP that subsequently can differentiate into osteoclasts in inflamed joints.


INTRODUCTION

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. MATERIALS AND METHODS
  5. RESULTS
  6. DISCUSSION
  7. Acknowledgements
  8. REFERENCES

OSTEOCLASTS ARE THE principal bone-resorbing cells and are formed by fusion of mononuclear precursors, which are in the monocyte/macrophage lineage.(1) Considerable progress has been made in our understanding of osteoclastogenesis by applying cell culture techniques(2) and generating transgenic and knockout mice.(3) From these studies, two distinct signals required for osteoclastogenesis have been identified. The first is delivered by macrophage-colony-stimulating factor (M-CSF), which signals through its receptor c-Fms. The second is mediated by RANKL through RANK. Cell culture conditions have been established in which M-CSF and RANKL are the only requirements for osteoclastogenesis,(4, 5) and mice genetically deficient in M-CSF or c-Fms(6, 7) or RANKL or RANK(8, 9) are incapable of osteoclastogenesis and suffer from osteopetrosis.

TNFα, a potent osteoclastogenic cytokine, promotes severe focal bone loss at sites of chronic inflammation. A relationship between TNFα and osteoclastic resorption has been firmly established in diseases that are associated with erosive bone loss, such as rheumatoid arthritis.(10, 11) Previous studies have demonstrated that TNFα stimulates RANKL production by stromal cells,(12) lymphocytes,(13, 14) and endothelial cells.(15) TNFα also stimulates M-CSF production by murine or human stromal cells.(16) Thus, it is well established that TNFα can induce osteoclast formation through this indirect mechanism. Furthermore, TNFα may directly promote osteoclastogenesis by affecting cells in the osteoclast lineage(17) and promote the bone resorptive activity of mature osteoclasts derived from spleen cells in a stromal cell/osteoblast-free environment.(18) Two groups have proposed that TNFα can compensate for RANKL during osteoclastogenesis in vitro under conditions of RANKL blockade.(19, 20) However, other investigators have argued that “permissive” levels of RANKL are required for TNFα-induced osteoclastogenesis in vitro.(21) Importantly, no study has demonstrated that osteoclastogenesis can occur in the absence of RANK signaling in vivo under physiological conditions. Adding fuel to this controversy are the various degrees of osteoclast inhibition observed from RANK blockade in the adjuvant-induced,(22) serum-induced,(23) collagen-induced,(24) and TNFα-induced(25) models of erosive arthritis.

Other areas under active investigation are definition of the various stages of osteoclastogenesis and assessment of their functional significance in erosive joint disease. Recently, we demonstrated that patients with psoriatic arthritis (PsA) have a remarkable increase in the number of circulating osteoclast precursors (OCP) in their peripheral blood mononuclear cell (PBMC) population, which correlated with erosive disease.(26) Furthermore, this increase in OCP was reversible with anti-TNF therapy and correlated with amelioration of clinical signs and symptoms. In a preclinical study, we have shown that transgenic and exogenous TNFα also markedly increased the OCP frequency in spleens and that all of these cells are contained within the CD11bhi population.(27)

In this study, we used the human TNFα transgenic mouse model (TNF-Tg mice) of erosive arthritis(28) to determine if there are both RANK-dependent and −independent stages of osteoclastogenesis in TNFα-induced erosive arthritis. Two in vivo models of RANKL blockade were used: (1) TNF-Tg mice treated with a RANKL antagonist, RANK:Fc, and (2) TNF-Tg mice in a RANK null background (TNF-Tg × RANK−/−). In these studies, we found that RANKL/RANK signaling is not required for the TNFα-stimulated increase in CD11bhi OCP. However, elevated levels of TNFα could not compensate for the absence of RANK signaling for mature osteoclast formation in arthritic joints and within bones. Thus, in chronic inflammatory bone loss, TNFα may first affect osteoclastogenesis by increasing CD11bhi osteoclast precursors in the periphery through a RANKL/RANK-independent mechanism. These osteoclast precursors then respond to RANKL and become mature osteoclasts at sites of bone resorption.

MATERIALS AND METHODS

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. MATERIALS AND METHODS
  5. RESULTS
  6. DISCUSSION
  7. Acknowledgements
  8. REFERENCES

Reagents

Murine RANK:Fc was provided by Dr W Dougall (Amgen Inc., Seattle, WA, USA). Recombinant human M-CSF was purchased from R&D Systems Inc. (Minneapolis, MN, USA). Anti-murine CD11b (M1/70) and related isotype controls were purchased from eBioscience Inc. (San Diego, CA, USA). Anti-murine CD16/32 (FcγIII/II) was obtained from Pharmingen (San Diego, CA, USA).

Animals

TNF-Tg mice (3647 TNF-Tg line) in a CBA × C57Bl/6 background were obtained from Dr G Kollias, and RANK−/− mice in a C57Bl/6 background were obtained from Dr W Dougall (Amgen Inc.).(9) TNF-Tg × RANK−/− mice were generated by inter-crossing TNF-Tg and RANK+/− mice to generate the TNF-Tg × RANK+/− F1 generation; these F1 mice were crossed with RANK+/−, and the progeny were genotyped by tail polymerase chain reaction (PCR). To accommodate the absence of teeth, adult TNF-Tg × RANK−/− and RANK−/− mice were fed with powdered mouse chow. The Institutional Animal Care and Use Committee approved all studies.

Preparation and histomorphometry of bone sections

The limbs were removed from mice after death, fixed in 10% buffered formalin, decalcified in 10% EDTA, and embedded in paraffin. Sections (5 μm thick) were then stained for TRACP activity and counter-stained with H&E. Histomorphometric analysis was performed in sections of TNF-Tg mice treated with RANK:Fc or PBS, as described previously,(29) using an Osteomeasure image analysis software (Osteometrics, Atlanta, GA, USA). Osteoclast numbers were expressed per tibia in longitudinal sections and per millimeter of eroded knee joint surface.

ELISA for human TNFα in mouse serum

Blood was drawn from TNF-Tg mice by cardio-puncture, and the serum was collected by centrifugation. The levels of human TNFα were detected according to the manufacturer's instruction (R & D Systems, Minneapolis, MN, USA). The whole procedure was carried at room temperature. Briefly, 96-well plates were coated with 4 μg/ml of capture antibody (MAB610) overnight and blocked with PBS containing 1% bovine serum albumin (BSA), 5% sucrose, and 0.05% NaN3 for 2 h. Serum samples and standards were added and incubated for 2 h. The plates were incubated with 200 ng/ml of biotinylated detection antibody (BAF210) for 1 h and streptavidin HRP (DY 998) for 20 minutes. The color reaction was developed by adding substrate solutions to the plates, and the optical density (OD) was read at 450 nm.

In vivo blockade with RANK:Fc

For short-term blockade of RANKL signaling, TNF-Tg mice (five per group) at 4 months of age (established arthritis) were given intraperitoneal injections of either RANK:Fc (10 mg/kg/day) or PBS for 2 weeks. For long-term blockade, TNF-Tg mice (five per group) at 3 months of age (onset of erosive arthritis) were given RANK:Fc (1 mg/kg) by intraperitoneal injections twice a week for 8 weeks. The mice were killed 1 day after the last injection. Spleen cells were harvested for fluorescence-activated cell sorting (FACS), and legs were processed for histological analysis.

In vitro osteoclastogenesis assay

Splenocytes were incubated with ammonium chloride solution for 10 minutes to lyse red blood cells and then cultured (1.75 × 105 cells/well in 96-well plates) in α-modified essential medium (α-MEM; GIBCO BRL, Grand Island, NY, USA) supplemented with 10% fetal calf serum (FCS; Hyclone Laboratories, Logan, UT, USA) in the presence of RANKL (100 ng/ml) and M-CSF (10 ng/ml). Cultures were maintained for 5 days at 37°C in an atmosphere of 5% CO2/air, and media were changed every 2 days by replacing one-half of the spent media with fresh media supplemented with RANKL/M-CSF. Cells were fixed and stained for TRACP activity using the Diagnostics Acid Phosphatase Kit (Sigma, St Louis, MO, USA) to identify osteoclasts, as described previously.(30)

FACS analysis

Surface protein staining was performed on freshly isolated mouse splenocytes. After red blood cell lysis, a single cell suspension was incubated with anti-murine CD16/32 to block Fc receptor-mediated antibody binding. Cells were then labeled with fluorescent probes, as described previously.(31) Data were acquired using a FACScalibur instrument (Beckton Dickenson, Bedford, MA, USA) and analyzed by Cellquest software (version 3.1).

Statistics

All results are given as means ± SE. Comparisons were made by ANOVA and Student's t-test for unpaired data. p values <0.05 were considered statistically significant.

RESULTS

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. MATERIALS AND METHODS
  5. RESULTS
  6. DISCUSSION
  7. Acknowledgements
  8. REFERENCES

To elucidate the RANKL dependence of TNFα-enhanced osteoclast formation in vivo, we used TNF-Tg mice that overexpress a human TNFα transgene. Human TNFα is detectable in the serum of these mice around 2 months of age (119.6 ± 47.8 pg/ml) when the first macroscopic sign of inflammatory arthritis, swollen ankle joints, can be observed. In contrast, murine TNFα concentrations are undetectable in these mice.(32) TNF-Tg mice with established arthritis (4 months old) were treated with PBS or RANK:Fc (10 mg/kg, daily, IP, for 2 weeks) and were killed 1 day after the last RANK:Fc injection. The knees of these mice were processed for histology. RANK:Fc treatment effectively reduced osteoclast number in both wildtype (PBS 112.7 ± 10.7 per tibia versus RANK:Fc 2.3 ± 0.3 per tibia, p < 0.01) and TNF-Tg mice (Fig. 1). Most striking was the depletion of osteoclasts at the leading edge of the subarticular erosions and below the growth plate (Figs. 1Ae and 1Af).

thumbnail image

Figure FIG. 1.. RANK blockade reduces osteoclast numbers both within long bones and at erosion sites in joints of TNF-Tg mice treated with RANK:Fc. Four-month-old TNF-Tg mice with established arthritis were treated with RANK:Fc (10 mg/kg, IP, daily for 2 weeks) or PBS. The knee joints were stained for TRACP activity and counterstained with hematoxylin/fast-green. (A) Representative photomicrographs of sections from (a-c) PBS- and (d-f) RANK:Fc-treated TNF-Tg mice are shown at 4×. Areas of interest (boxes) at the leading edge of subarticular erosions (b and e) and below the growth plate (c and f) are shown at 20×. (B) Osteoclast numbers in the tibia and on eroded joint surfaces of the TNF-Tg mice were quantified by histomorphometry. The data are presented as (A) representative animals or (B) the mean ± SE (*p < 0.01) of the group (n = 5 per group).

Download figure to PowerPoint

To determine if RANK:Fc could block the TNFα-mediated increase in OCPs, we collected splenocytes from the mice described in Fig. 1 and assessed the frequency of CD11bhi OCP and their osteoclastogenic potential. Splenocytes were divided into two aliquots. One was stained with antibodies for CD11b and analyzed by FACS to determine the frequency of CD11bhi OCP cells; the other was cultured in the presence of M-CSF and RANKL for 5 days to generate osteoclasts and assessed by TRACP assay. RANK:Fc treatment did not decrease the percentage of CD11bhi splenocytes (Fig. 2A) or the osteoclastogenic potential of these OCP (Fig. 2B).

thumbnail image

Figure FIG. 2.. RANK blockade has no effect on the increased CD11bhi osteoclast precursor frequency (OCP) in TNF-Tg mice. Splenocytes were harvested from the RANK:Fc- or PBS-treated mice, as described above, as well as from wildtype mice. (A) The cells were stained with anti-CD11b antibodies, and the frequency of CD11bhi OCP was determined by FACS, as described in the Materials and Methods section. (B) Splenocytes were cultured with M-CSF and RANKL, and their osteoclastogenic potential was determined by TRACP assay. The data from FACS are shown as representative animals, and the data from osteoclastogenesis assays are represented as the mean ± SE of four replicate samples from pooled mice (n = 5 per group). No statistical differences were found in CD11bhi OCP frequency and osteoclastogenic potential of splenocytes between the RANK:Fc-treated and control groups.

Download figure to PowerPoint

We next examined if longer-term blockade of RANKL signaling with RANK:Fc could inhibit the bone erosion in inflammatory arthritis by reducing osteoclast numbers. TNF-Tg mice were treated with 1 mg/kg of RANK:Fc twice a week for 8 weeks at the time when erosive arthritis begins to develop (3 months old). At this dose, RANK:Fc also significantly reduced osteoclast numbers at the site of inflammation (Figs. 3A and 3B), but did not reduce the increased frequency of CD11bhi OCPs in the periphery (Fig. 3C). Serum human TNFα concentrations remained elevated in these RANK:Fc-treated TNF-Tg mice: 47 ± 19.6 pg/ml versus 85 ± 42 pg/ml (p > 0.05) in untreated TNF-Tg mice and undetectable values in wildtype mice. This low dose of RANK:Fc efficiently ameliorated bone erosion in TNF-Tg mice compared with placebo-treated control mice (Figs. 3A and 3B).

thumbnail image

Figure FIG. 3.. Long-term, low-dose RANK:Fc treatment reduces osteoclast numbers and bone erosion but not the increased CD11bhi osteoclast progenitor frequency in TNF-Tg mice. Three-month-old TNF-Tg mice were treated with RANK:Fc (1 mg/kg) or placebo intraperitoneally twice a week for 8 weeks. (A) The knee joints were prepared for (a and d) H&E staining and (b, c, e, and f) TRACP staining. Representative photomicrographs of sections from (a-c) PBS- and (d-f) RANK:Fc-treated TNF-Tg mice are shown. The images of c and f show the leading edge of subarticular erosion and inflammatory pannus at higher magnification. (B) Osteoclast numbers on erosion surfaces and bone erosion were quantified by histomorphometry. (C) CD11b expression on splenocytes was determined by FACS. The data are presented as (A and C) representative animals or (B) the mean ± SE (*p < 0.01) of the group (n = 5 per group). No statistical differences were found in CD11bhi OCP frequency between the RANK:Fc-treated and control groups.

Download figure to PowerPoint

To further define the role of RANK signaling in TNFα-induced osteoclastogenesis in vivo, we crossed the TNF-Tg mice with RANK knockout mice (RANK−/−). These mice (TNF-Tg × RANK−/−) were smaller in size than their wildtype and TNF-Tg littermates, had no tooth eruption, and were severely osteopetrotic by radiographic analysis (Fig. 4A). Gross analysis failed to identify any differences in phenotype between the TNF-Tg × RANK−/− mice and their RANK−/− littermates. Histological analysis of 4-month-old TNF-Tg × RANK−/− mice showed a complete absence of osteoclasts in their bones (Fig. 4B). Consistent with the RANK:Fc treatment results in Figs. 1 and 2, spleens from TNF-Tg × RANK−/− mice contained a larger CD11bhi population than either of their wildtype or RANK−/− littermates (Fig. 5A). Using our standard culture conditions, we did not detect any osteoclastogenic potential in TNF-Tg × RANK−/− splenocytes (Fig. 5B). The TNF-Tg × RANK−/− mice had an increase in CD11bhi precursors that were unable to differentiate into mature osteoclasts in vivo.

thumbnail image

Figure FIG. 4.. TNF-Tg mice in a RANK null background have osteopetrosis caused by the absence of mature osteoclasts. TNF-Tg × RANK−/− mice were obtained by crossing TNF-Tg and RANK knockout mice, as described in the Materials and Methods section. Four-month-old TNF-Tg × RANK−/− mice and their WT, TNF-Tg, and RANK−/− littermates were killed and subjected to various analyses. (A) Bone density and tooth eruption were assessed by X-ray radiography. (B) Tibia from (a an b) WT, (c and d) TNF-Tg, (e and f) RANK−/−, and (g and h) TNF-Tg × RANK−/− mice were prepared for histology, stained for TRACP activity, and counterstained with hematoxylin/fast-green. Areas of interest (boxes) in the 4× photomicrographs (a, c, e, and g) are presented at 20× (b, d, f, and h). The data are presented as representative animals (n = 3 per group).

Download figure to PowerPoint

thumbnail image

Figure FIG. 5.. TNF-Tg × RANK−/− mice have levels of CD11bhi osteoclast precursors comparable with TNF-Tg mice, which do not give rise to mature osteoclasts in vitro. Splenocytes were collected from 4-month-old TNF-Tg × RANK−/− mice and their WT, TNF-Tg, and RANK−/− littermates. (A) Cells were stained for CD11b and analyzed by FACS, as described in the Materials and Methods section. RANK−/− mice had a greater number of mature granulocytes/neutrophils, which are CD11bhi/Gr-1+. In this experiment, splenocytes from all four genotypes of mice were double-stained for CD11b and Gr-1. The data are shown as the percentage of CD11bhi/Gr-1 cells in splenocytes. (B) Osteoclastogenic potential of splenocytes was determined by in vitro osteoclastogenesis assay. The data are presented as (A) representative animals and (B) the mean ± SE of four replicate samples from pooled mice (n = 3 per group). No statistical differences were found in CD11bhi OCP frequency between TNF-Tg and TNF-Tg × RANK−/− mice.

Download figure to PowerPoint

DISCUSSION

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. MATERIALS AND METHODS
  5. RESULTS
  6. DISCUSSION
  7. Acknowledgements
  8. REFERENCES

Several studies have revealed a novel RANK-independent mechanism by which TNFα mediates osteoclastogenesis using in vitro cell culture models.(18–20) Administration of high doses of exogenous TNFα also leads to the formation of occasional osteoclast-like cells in RANK−/− mice at the site of calvarial injection, suggesting that TNFα may substitute for RANKL and induce osteoclastogenesis in vivo.(33) However, RANK-independent osteoclastogenesis has not been documented in a pathological setting in vivo. Previously, we investigated RANK-independent osteoclastogenesis in animal models of wear debris-induced osteolysis(34) and fracture healing,(35) where TNFα is present in large quantities. However, we did not observe any RANK-independent osteoclastogenesis. Here, we again show that, in a model of chronic TNFα overexpression and aggressive bone erosion, osteoclastogenesis does not occur in the absence of RANKL/RANK signaling.

Osteoclasts are derived from multipotent stem cells in the bone marrow. The stem cells that are committed to the osteoclast lineage undergo proliferation and differentiation to become TRACP+ osteoclast precursors. Arai et al.(36) have used a comprehensive panel of cell surface markers, cell sorting, CFU-M colony assay, and bone marrow cultures to separate TRACP osteoclast precursors into two groups: early stage cells characterized as “c-Fms+/CD11blo/RANK,” and late stage precursors characterized as “c-Fms+/CD11bhi/RANK+.” Using a similar strategy, we recently characterized osteoclast precursors in mouse spleen as “c-Fms+/−/CD11bhi/RANK+/−.”(27) Our findings demonstrated that CD11bhi alone can be used as a marker to identify TRACP osteoclast precursors in the periphery. Using CD11bhi as a marker for peripheral OCPs, we found that TNFα expressed in transgenic mice increases peripheral CD11bhi OCP frequency in vivo and that etanercept (a TNF blocker) treatment reduced the number of CD11bhi splenocytes and their osteoclastogenic potential to wildtype levels. More importantly, we demonstrated that patients with psoriatic arthritis have a marked increase in the number of CD11bhi OCPs in their peripheral blood compared with normal controls and patients with osteoarthritis.(26) This increase also seems to be reversible with anti-TNF therapy, indicating that the increase in CD11bhi OCP frequency is mediated by TNFα.(27)

To examine the requirement for RANKL/RANK in the TNFα-mediated increase in CD11bhi OCPs as well as in mature osteoclast formation at the site of inflammation in diseased joints, we used two animal models where TNFα levels are high, but RANK signaling has been blocked. In the first, we injected the RANKL antagonist, RANK:Fc, into TNF-Tg mice that have elevated levels of TNFα in their circulation.(27) RANK:Fc is a soluble fusion protein consisting of the extracellular domain of RANK fused to the Fc domain of IgG1.(37) In the second animal model, we generated TNF-Tg/RANK−/− mice. In both models, we found that RANK blockade abolishes mature osteoclast formation but has no effect on the increased CD11bhi OCP frequency, indicating that the TNFα-mediated increase in CD11bhi OCPs in vivo is RANK independent. However, we found that RANK signaling is indispensable for mature osteoclast formation.

One caveat about these conclusions is that inhibition of RANK signaling could affect TNF levels in vivo. It is not known if RANKL can stimulate TNFα production. However, given the restricted expression pattern of RANK protein, which is only expressed on the surface of osteoclast precursors and dendritic cells, and the fact that synovial cells are a major source of TNFα in these TNF-Tg mice,(32) it is unlikely that blockade of RANKL/RANK signaling in our animal models influenced TNFα levels. Indeed, our data show that the serum TNFα levels in RANK:Fc-treated TNF-Tg mice remained elevated with an associated increase in OCP frequency. Although we did not measure TNFα levels in the TNF-Tg × RANK−/− mice, these animals had increased numbers of CD11bhi/Gr-1 cells, the values being similar to those in the TNF-Tg mice and significantly higher than RANK−/− mice. Furthermore, injection of murine TNFα increased the CD11bhi OCP frequency in the peripheral blood of RANK−/− mice (Li P, Schwarz EM, Boyce BF, and Xing L, unpublished data, 2003).

The activation of NF-κB and AP-1 signaling pathways by TNFα have been well documented in bone marrow-derived macrophages, which become enriched for CD11b+ cells after M-CSF treatment.(21, 38) These pathways regulate proliferation, differentiation, and survival in many cell types. However, we have found that TNFα does not affect proliferation or apoptosis of CD11bhi OCPs in vivo or differentiation of the precursors in vitro. Because osteoclast precursors originate from hematopoietic stem cells in the bone marrow, it is possible that TNFα may affect the release of precursors into the periphery, leading to an increase in circulating CD11bhi OCPs. Indeed, administration of TNFα into wildtype mice rapidly increased the number of CD11bhi cells in the periphery, suggesting that expedited mobilization of this late stage OCP from bone marrow may be the underlining mechanism of this TNFα-mediated process.

Together with our knowledge of the pathology associated with focal bone loss in RA(39, 40) and the presence of abundant amounts of RANKL at these sites,(41, 42) our data suggest that RANKL/RANK signaling plays distinct roles in two phases of systemic TNFα-mediated osteoclastogenesis. In the first phase, RANK signaling is dispensable for a TNFα-mediated increase in the number of CD11bhi/c-Fms+/−/RANK+/− OCPs(27) in the periphery. In the second phase, an obligatory RANKL/RANK signal is required for mature osteoclast formation at the sites of bone erosion where TNFα and/or other mediators of osteoclastogenesis are increased. In this phase, RANKL/RANK signaling is the “check point” for osteoclastogenesis in vivo. Thus, a rational clinical approach to prevent erosive inflammatory arthritis would be a combination of anti-TNF therapy and OPG or RANK:Fc in RA patients who do not respond to or develop resistance to anti-TNF therapy.

Acknowledgements

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. MATERIALS AND METHODS
  5. RESULTS
  6. DISCUSSION
  7. Acknowledgements
  8. REFERENCES

The RANK:Fc used in this study were provided by Amgen Inc. The authors thank W Dougall for critical advice and J Harvey for technical assistance with the histology. This work was supported by research grants from the National Institutes of Health (PHS AR45791, AR43510, AR44220, and AR48697).

REFERENCES

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. MATERIALS AND METHODS
  5. RESULTS
  6. DISCUSSION
  7. Acknowledgements
  8. REFERENCES
  • 1
    Boyle WJ, Simonet WS, Lacey DL 2003 Osteoclast differentiation and activation. Nature 423:337342.
  • 2
    Suda T, Nakamura I, Jimi E, Takahashi N 1997 Regulation of osteoclast function. J Bone Miner Res 12:869879.
  • 3
    Karsenty G 1999 The genetic transformation of bone biology. Genes Dev 13:30373051.
  • 4
    Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ 1998 Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165176.
  • 5
    Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T 1998 Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:35973602.
  • 6
    Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD 1990 The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345:442444.
  • 7
    Dai X, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER 2002 Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99:111120.
  • 8
    Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM 1999 OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315323.
  • 9
    Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J 1999 RANK is essential for osteoclast and lymph node development. Genes Dev 13:24122424.
  • 10
    Udagawa N, Kotake S, Kamatani N, Takahashi N, Suda T 2003 The molecular mechanism of osteoclastogenesis in rheumatoid arthritis. Arthritis Res 4:281289.
  • 11
    Maini RN, Elliott MJ, Brennan FM, Williams RO, Chu CQ, Paleolog E, Charles PJ, Taylor PC, Feldmann M 1995 Monoclonal anti-TNF alpha antibody as a probe of pathogenesis and therapy of rheumatoid disease. Immunol Rev 144:195223.
  • 12
    Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S 1999 Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25:255259.
  • 13
    Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, Pacifici R 2000 Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 106:12291237.
  • 14
    Kanematsu M, Sato T, Takai H, Watanabe K, Ikeda K, Yamada Y 2000 Prostaglandin E2 induces expression of receptor activator of nuclear factor-kappa B ligand/osteoprotegrin ligand on pre-B cells: Implications for accelerated osteoclastogenesis in estrogen deficiency. J Bone Miner Res 15:13211329.
  • 15
    Collin-Osdoby P, Rothe L, Anderson F, Nelson M, Maloney W, Osdoby P 2001 Receptor activator of NF-kappa B and osteoprotegerin expression by human microvascular endothelial cells, regulation by inflammatory cytokines, and role in human osteoclastogenesis. J Biol Chem 276:2065920672.
  • 16
    Kimble RB, Srivastava S, Ross FP, Matayoshi A, Pacifici R 1996 Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-1and tumor necrosis factor-mediated stimulation of macrophage colony-stimulating factor production. J Biol Chem 271:2889028897.
  • 17
    Abu-Amer Y, Erdmann J, Alexopoulou L, Kollias G, Ross FP, Teitelbaum SL 2000 Tumor necrosis factor receptors types 1 and 2 differentially regulate osteoclastogenesis. J Biol Chem 275:2730727310.
  • 18
    Fuller K, Murphy C, Kirstein B, Fox SW, Chambers TJ 2002 TNFalpha potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology 143:11081118.
  • 19
    Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T 2000 Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191:275286.
  • 20
    Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A 2000 Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem 275:48584864.
  • 21
    Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL 2000 TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:14811488.
  • 22
    Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, Wong T, Campagnuolo G, Moran E, Bogoch ER, Van G, Nguyen LT, Ohashi PS, Lacey DL, Fish E, Boyle WJ, Penninger JM 1999 Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402:304309.
  • 23
    Pettit AR, Ji H, von Stechow D, Muller R, Goldring SR, Choi Y, Benoist C, Gravallese EM 2001 TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol 159:16891699.
  • 24
    Romas E, Sims NA, Hards DK, Lindsay M, Quinn JW, Ryan PF, Dunstan CR, Martin TJ, Gillespie MT 2002 Osteoprotegerin reduces osteoclast numbers and prevents bone erosion in collagen-induced arthritis. Am J Pathol 161:14191427.
  • 25
    Redlich K, Hayer S, Maier A, Dunstan CR, Tohidast-Akrad M, Lang S, Turk B, Pietschmann P, Woloszczuk W, Haralambous S, Kollias G, Steiner G, Smolen JS, Schett G 2002 Tumor necrosis factor alpha-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis Rheum 46:785792.
  • 26
    Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM 2003 Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest 111:821831.
  • 27
    Li P, Schwarz EM, O'Keefe RJ, Ma L, Looney JR, Ritchlin CT, Boyce BF, Xing L 2003 Systemic TNFa mediates an increase in periphery CD11bhi osteoclast progenitors in TNFα transgenic mice. Arthritis Rheum (in press)
  • 28
    Douni E, Akassoglou K, Alexopoulou L, Georgopoulos S, Haralambous S, Hill S, Kassiotis G, Kontoyiannis D, Pasparakis M, Plows D, Probert L, Kollias G 1995 Transgenic and knockout analyses of the role of TNF in immune regulation and disease pathogenesis. J Inflamm 47:2738.
  • 29
    Boyce BF, Yoneda T, Lowe C, Soriano P, Mundy GR 1992 Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest 90:16221627.
  • 30
    Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF, Siebenlist U 1997 Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 11:34823496.
  • 31
    Li P, Sanz I, O'Keefe RJ, Schwarz EM 2000 NF-kappa B regulates VCAM-1 expression on fibroblast-like synoviocytes. J Immunol 164:59905997.
  • 32
    Butler DM, Malfait AM, Mason LJ, Warden PJ, Kollias G, Maini RN, Feldmann M, Brennan FM 1997 DBA/1 mice expressing the human TNF-alpha transgene develop a severe, erosive arthritis: Characterization of the cytokine cascade and cellular composition. J Immunol 159:28672876.
  • 33
    Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ 2000 RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 97:15661571.
  • 34
    Childs LM, Paschalis EP, Xing L, Dougall WC, Anderson D, Boskey AL, Puzas JE, Rosier RN, O'Keefe RJ, Boyce BF, Schwarz EM 2002 In vivo RANK signaling blockade using the receptor activator of NF-kappaB:Fc effectively prevents and ameliorates wear debris-induced osteolysis via osteoclast depletion without inhibiting osteogenesis. J Bone Miner Res 17:192199.
  • 35
    Flick LM, Weaver JM, Ulrich-Vinther M, Abuzzahab F, Zhang X, Dougall WC, Anderson D, O'Keefe RJ, Schwarz EM 2003 Effects of receptor activator of NFkappaB (RANK) signaling blockade on fracture healing. J Orthop Res 21:676684.
  • 36
    Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, Miyata T, Anderson DM, Suda T 1999 Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med 190:17411754.
  • 37
    Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L 1997 A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175179.
  • 38
    Zhang YH, Heulsmann A, Tondravi MM, Mukherjee A, Abu-Amer Y 2001 Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biol Chem 276:563568.
  • 39
    Bromley M, Woolley DE 1984 Histopathology of the rheumatoid lesion. Identification of cell types at sites of cartilage erosion. Arthritis Rheum 27:857863.
  • 40
    Bromley M, Woolley DE 1984 Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint. Arthritis Rheum 27:968975.
  • 41
    Gravallese EM, Manning C, Tsay A, Naito A, Pan C, Amento E, Goldring SR 2000 Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum 43:250258.
  • 42
    Takayanagi H, Iizuka H, Juji T, Nakagawa T, Yamamoto A, Miyazaki T, Koshihara Y, Oda H, Nakamura K, Tanaka S 2000 Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum 43:259269.