SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Quarles LD, Drezner MK 2001 Pathophysiology of X-linked hypophosphatemia, tumor-induced osteomalacia, and autosomal dominant hypophosphatemia: A perPHEXing problem. J Clin Endocrinol Metab 86:494496.
  • 2
    Econs MJ, Drezner MK 1994 Tumor-induced osteomalacia-unveiling a new hormone. N Engl J Med 330:16791681.
  • 3
    White KE, Jonsson KB, Carn G, Hampson G, Spector TD, Mannstadt M, Lorenz-Depiereux B, Miyauchi A, Yang IM, Ljunggren O, Meitinger T, Strom TM, Juppner H, Econs MJ 2001 The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab 86:497500.
  • 4
    Larsson T, Zahradnik R, Lavigne J, Ljunggren O, Juppner H, Jonsson KB 2003 Immunohistochemical detection of FGF-23 protein in tumors that cause oncogenic osteomalacia. Eur J Endocrinol 148:269276.
  • 5
    Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T 2001 Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 98:65006505.
  • 6
    White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ 2001 Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int 60:20792086.
  • 7
    Shimada T, Muto T, Urakawa I, Yoneya T, Yamazaki Y, Okawa K, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T 2002 Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology 143:31793182.
  • 8
    The ADHR Consortium 2000 Autosomal dominant hypophosphatemic rickets is associated with mutations in FGF23. Nat Genet 26 345348.
  • 9
    Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, Takeuchi Y, Fujita T, Nakahara K, Yamashita T, Fukumoto S 2002 Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab 87:49574960.
  • 10
    Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, Yamamoto T, Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ, Lavigne J, Juppner H 2003 Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 348:16561663.
  • 11
    Bai XY, Miao D, Goltzman D, Karaplis AC 2003 The autosomal dominant hypophosphatemic rickets R176Q mutation in FGF23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem 278:98439849.
  • 12
    Bowe AE, Finnegan R, Jan de Beur SM, Cho J, Levine MA, Kumar R, Schiavi SC 2001 FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 284:977981.
  • 13
    Yamashita T, Konishi M, Miyake A, Inui K, Itoh N 2002 Fibroblast growth factor (FGF)-23 inhibits renal phosphate reabsorption by activation of the mitogen-activated protein kinase pathway. J Biol Chem 277:2826528270.
  • 14
    Kessler M, Acuto O, Storelli C, Murer H, Muller M, Semenza G 1978 A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use in investigating some properties of D-glucose and choline transport systems. Biochim Biophys Acta 506:136154.
  • 15
    Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS 1998 Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA 95:53725377.
  • 16
    Tenenhouse HS 1999 Recent advances in epithelial sodium-coupled phosphate transport. Curr Opin Nephrol Hypertens 8:407414.
  • 17
    Murer H, Lotscher M, Kaissling B, Levi M, Kempson SA, Biber J 1996 Renal brush border membrane Na/Pi-cotransport: Molecular aspects in PTH-dependent and dietary regulation. Kidney Int 49:17691773.
  • 18
    Kempson SA, Lotscher M, Kaissling B, Biber J, Murer H, Levi M 1995 Parathyroid hormone action on phosphate transporter mRNA and protein in rat renal proximal tubules. Am J Physiol 268:F784F791.
  • 19
    Brown AJ, Dusso A, Slatopolsky E 1999 Vitamin D. Am J Physiol 277:F157F175.
  • 20
    Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K 2002 Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277:1966519672.
  • 21
    Nielsen LB, Pedersen FS, Pedersen L 2001 Expression of type III sodium-dependent phosphate transporter/retroviral receptor mRNAs during osteoblast differentiation. Bone 28:160166.
  • 22
    Shimada T, Kakitani M, Hasegawa H, Yamazaki Y, Ohguma A, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T 2002 Targeted ablation of FGF-23 causes hyperphosphatemia, increased 1,25-dihydroxyvitamin D level, and severe growth retardation. J Bone Miner Res 17:S1;S168.
  • 23
    Kahlen JP, Carlberg C 1994 Identification of a vitamin D receptor homodimer-type response element in the rat calcitriol 24-hydroxylase gene promoter. Biochem Biophys Res Commun 202:13661372.
  • 24
    Murayama A, Takeyama K, Kitanaka S, Kodera Y, Kawaguchi Y, Hosoya T, Kato S 1999 Positive and negative regulations of the renal 25-hydroxyvitamin D3 1alpha-hydroxylase gene by parathyroid hormone, calcitonin, and 1alpha, 25(OH)2D3 in intact animals. Endocrinology 140:22242231.