SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arsian-Kirchner M, Batch JA, Beighton P, Black GCM, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepa A, Floege B, Halfide ML, Hall B, Hennekam RC, Hirose T, Jans A, Juppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superta-Furga A, Swoboda W, van den Boogaard MJ, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman M 2001 LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107: 513523.
  • 2
    Streeten EA, Morton H, McBride DJ 2003 Osteoporosis pseudoglioma syndrome: 3 siblings with a novel LRP5 mutation. J Bone Miner Res 18: S2; S35.
  • 3
    Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, Lappe MM, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald MG, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen KM, Anisowicz A, Morales AJ, Lomedico PT, Recker SM, Van Eerdewegh P, Recker RR, Johnson ML 2002 A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70: 1119.
  • 4
    Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP 2002 High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346: 15131521.
  • 5
    Van Wesenbeeck E, Cleiren E, Gram J, Beals R, Benichou O, Scopelliti D, Key L, Renton T, Bartles C, Gong Y, Warman M, Vernejoul M, Bollerslev J, Van Hul W 2003 Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with and increased bone density. Am J Hum Genet 72: 763771.
  • 6
    Strickland DK, Gonias SL, Argraves WS 2002 Diverse roles for the LDL receptor family. Trends Endocrinol Metab 13: 6674.
  • 7
    Goldstein JL, Brown MS 1974 Binding and degradation of low density lipoproteins by cultured human fibroblasts. J Biol Chem 249: 51335162.
  • 8
    Goldstein JL, Hobbs HH, Brown MS 1995 Familial Hypercholesterolemia. McGraw-Hill, New York, NY, USA.
  • 9
    Koduri V, Blacklow SC 2001 Folding determinants of LDL receptor type A modules. Biochemistry 40: 1280112807.
  • 10
    Beglova N, North CL, Blacklow SC 2001 Backbone dynamics of a module pair from the ligand-binding domain of the LDL receptor. Biochemistry 40: 28082815.
  • 11
    North CL, Blacklow SC 2000 Solution structure of the sixth LDL-A module of the LDL receptor. Biochemistry 39: 25642571.
  • 12
    North CL, Blacklow SC 2000 Evidence that familial hypercholesterolemia mutations of the LDL receptor cause limited local misfolding in an LDL-A module pair. Biochemistry 39: 1312713135.
  • 13
    Jeon H, Meng W, Takagi J, Eck MJ, Springer TA, Blacklow SC 2001 Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair. Nat Struct Biol 8: 499504.
  • 14
    Kim DH, Inagaki Y, Suzuki T, Ioka RX, Yoshioka SZ, Magoori K, Kang MJ, Cho Y, Nakano AZ, Liu Q, Fujino T, Suzuki H, Sasano H, Yamamoto TT 1998 A new low density lipoprotein receptor related protein, LRP5, is expressed in hepatocytes and adrenal cortex, and recognizes apolipoprotein E. Eur J Biochem 124: 10721076.
  • 15
    Dong Y, Lathrop W, Weaver D, Qiu Q, Cini J, Bertolini D, Chen D 1998 Molecular cloning and characterization of LR3, a novel LDL receptor family protein with mitogenic activity. Biochem Biophys Res Commun 251: 784790.
  • 16
    Hey PJ, Twells RC, Phillips MS, Yusuke N, Brown SD, Kawaguchi Y, Cox R, Guochun X, Dugan V, Hammond H, Metzker ML, Todd JA, Hess JF 1998 Cloning of a novel member of the low-density lipoprotein receptor family. Gene 216: 103111.
  • 17
    Davies J, Kawqguchi Y, Bennet S, Copeman J, Cordell H, Pritchard L, Reed P, Gough S, Jenkins S, Palmer S, Balfour K, Rowe B, Farrall M, Barnett A, Bain S, Todd J 1994 A genome-wide search for human type I diabetes susceptibility genes. Nature 371: 130136.
  • 18
    Hashimoto L, Habita C, Beressi J, Delepine M, Besse C, Cambon-Thomsen A, Seschamps I, Rotter J, Djoulah S, James M, Froguel P, Weissenbach J, Lathrop G, Julier C 1994 Genetic mapping of a susceptibility locus for insulin-dependent diabetes mellitus on chromosome 11q. Nature 371: 161164.
  • 19
    Brown SD, Twells RC, Hey PJ, Cox RD, Levy ER, Soderman AR, Metzker ML, Caskey CT, Todd JA, Hess JF 1998 Isolation and characterization of LRP6, a novel member of the low density lipoprotein receptor gene family. Biochem Biophys Res Commun 248: 879888.
  • 20
    Twells RC, Metzker ML, Brown SD, Cox R, Garey C, Hammond H, Hey PJ, Levy E, Nakagawa Y, Philips MS, Todd JA, Hess JF 2001 The sequence and gene characterization of a 400-kb candidate region for IDDM4 on chromosome 11q13. Genomics 72: 23142.
  • 21
    Wehrli M, Dougan ST, Caldwell K, O'Keefe L, Schwartz S, Vaizel-Ohayon D, Schejter E, Tomlinson A, DiNardo S 2000 Arrow encodes an LDL-receptor-related protein essential for wingless signaling. Nature 407: 527530.
  • 22
    Brown MS, Herz J, Golstein JL 1997 LDL-receptor structure. Calcium cages, acid baths and recycling receptors. Nature 388: 629630.
  • 23
    Takagi J, Yang Y, Liu J, Wang J, Springer T 2003 Complex between nidogen and laminin fragments reveals a paradigmatic-propeller interface. Nature 424: 969974.
  • 24
    Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR, Nusse R 2003 Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423: 448452.
  • 25
    Nusse R 2003 Wnts and Hedgehogs: Lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development 130: 52975305.
  • 26
    Kadowaki T, Wilder E, Klingensmith J, Zachary K, Perrimon N 1996 The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing. Gene Development 10: 31163128.
  • 27
    Mason JO, Kitajewski J, Varmus HE 1992 Mutational analysis of mouse Wnt-1 identifies two temperature-sensitive alleles and attributes of Wnt-1 protein essential for transformation of a mammary cell line. Mol Biol Cell 3: 521533.
  • 28
    Bhanot P, Brink M, Harryman Samos C, Hsieh JC, Wang YS, Macke JP, Andrew D, Nathans J, Nusse R 1996 A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382: 225230.
  • 29
    Moon RT, Brown JD, Yang-Snyder JA, Miller JR 1997 Structurally related receptors and antagonists compete for secreted Wnt ligands. Cell 88: 725728.
  • 30
    Hsieh JC, Rattner A, Smallwood PM, Nathans J 1999 Biochemical characterization of Wnt-frizzled interacitons using a soluble, biologically active vertebrate Wnt protein. Proc Natl Acad Sci USA 96: 35463551.
  • 31
    Dann CE, Hsieh JC, Rattner A, Sharma D, Nathans J, Leahy DJ 2001 Insights into Wnt binding and signaling from the structures of two Frizzled cysteine-rich domains. Nature 412: 8690.
  • 32
    Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet JP, He X 2000 LDL-receptor-related proteins in Wnt signal transduction. Nature 407: 530535.
  • 33
    Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C 2001 LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411: 321325.
  • 34
    Perriman N, McMahon AP 1999 Negative feedback mechanisms and their roles during pattern formation. Cell 97: 1316.
  • 35
    Wodarz A, Nusse R 1998 Mechanisms of Wnt signaling in development. Cell Dev Biol 14: 5988.
  • 36
    Tolwinski NS, Wehrli M, Rives A, Erdeniz N, DiNardo S, Wieschaus E 2003 Wg/Wnt signal can be transmitted through arrow/LRP5,6 and Axin independently of Zw3/Gsk3beta activity. Dev Cell 4: 407418.
  • 37
    Hartman C, Tabin CJ 2000 Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127: 31413159.
  • 38
    Kengaku M, Capdevila J, Rodriguez-Esteban C, De La Pena J, Johnson RL, Belmonte JC, Tabin CJ 1998 Distinct Wnt pathways regulating AER formation and dorsoventral polarity in the chick limb bud. Science 280: 12741277.
  • 39
    Kawakami Y, Wada N, Nishimatsu SI, Ishikawa T, Noji S, Nohno T 1999 Involvement of Wnt-5a in chondrogenic pattern formation in the chick limb bud. Dev Growth Differ 41: 2940.
  • 40
    Tuan RS 2003 Cellular signaling in developmental chondrogenesis: N-cadherin, Wnts, and BMP-2. J Bone Joint Surg Am 85 (Suppl 2): 137141.
  • 41
    Yang Y, Topol L, Lee H, Wu J 2003 Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differntiation. Development 130: 10031015.
  • 42
    Hartman C, Tabin CJ 2001 Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104: 341351.
  • 43
    Leyns L, Bouwmeester T, Kim S-H, Piccolo S, De Roberts EM 1997 Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88: 747756.
  • 44
    Wang S, Krnks M, Lin K, Luyten FP, Moos M 1997 Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88: 757766.
  • 45
    Finch PW, He X, Kelley MJ, Uren A, Schaudies RP, Popescu NC, Rudikoff S, Aaronson SA, Varmus HA, Rubin JS 1997 Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proc Natl Acad Sci USA 94: 67706775.
  • 46
    Hausler KD, Horwood NJ, Uren A, Ellis J, Lengel C, Martin TJ, Rubin JS, Gillespie MT 2001 Secreted Frizzled-related protein (sFRP-1) binds to RANKL to inhibit osteoclast formation. J Bone Miner Res 16: S153.
  • 47
    Willnow TE 1999 The low-density lipoprotein receptor gene family: Multiple roles in lipid metabolism. J Mol Med 77: 306315.
  • 48
    Cooper JA, Howell BW 1999 Lipoprotein receptors: Signaling funcitons in the brain? Cell 97: 671674.
  • 49
    Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC 2000 An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407: 535538.
  • 50
    Mao J, Wang J, Liu B, Pan W, Farr G, Flynn C, Yuan H, Takada S, Kimelman D, Li L, Wu D 2001 Low-density lipoprotein receptor-related protein-5 binds to axin and regulates the canonical Wnt signaling pathway. Mol Cell 7: 801809.
  • 51
    Schweizer L, Varmus H 2003 Wnt/Wingless signaling through beta-catenin requires the function of both LRP/Arrow and frizzled classes of recepts. BMC Cell Biol 4: 4.
  • 52
    Tamai K, Zeng X, Liu C, Zhang X, Harada Y, Chang Z, He X 2004 A mechanism for Wnt coreceptor activation. Mol Cell 13: 149156.
  • 53
    Smalley MJ, Sara E, Paterson H, Naylor S, Cook D, Jayatilake H, Fryer LG, Hutchinson L, Fry MJ, Dale TC 1999 Interaction of Axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J 18: 28232835.
  • 54
    Chen W, Ten Berge D, Brown J, Ahn S, Hu L, Miller W, Caron M, Barak L, Nusse R, Lefkowitz R 2003 Dishevelled2 recruits barrestin2 to mediate Wnt5A stimulated Frizzled4 endocystosis. Science 301: 13911394.
  • 55
    Cliffe A, Hamada F, Bienz M 2003 A role of Dishevelled in relocating Axin to the plasma memebrane during wingless signaling. Curr Biol 13: 960966.
  • 56
    Wong HC, Bourdelas A, Krauss A, Lee HJ, Shao Y, Wu D, Mlodzik M, Shi DL, Zheng J 2002 Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol Cell 12: 12511260.
  • 57
    Bienz M, Clevers H 2000 Linking colorectal cancer to Wnt sigaling. Cell 103: 311320.
  • 58
    Willert K, Logan CY, Arora A, Fish M, Nusse R 1999 A Drosophila Axin homolog, Daxin, inhibits Wnt signaling. Development 126: 41654173.
  • 59
    Ideda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A 1998 Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J 17: 13711384.
  • 60
    Culi J, Mann RS 2003 Boca, an endoplasmic reticulum protein required for wingless signaling and trafficking of LDL receptor family members in Drosophila. Cell 112: 343354.
  • 61
    Hsieh J-C, Lee L, Zhang L, Wefer S, Brown K, Rosenquist T, Holdener BC 2003 Mesd encodes an LRP5/6 chaperone essential for specification of mouse embryonic polarity. Cell 112: 355367.
  • 62
    Itasaki N, Jones CM, Mercurio S, Rowe A, Domingos PM, Smith JC, Krumlauf R 2003 Wise, a context-dependent activator and inhibitor of Wnt signaling. Development 130: 42954305.
  • 63
    Glinka AW, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C 1998 Dickkopf-1 is a member of a new family of secreted proteins and functions in head iduction. Nature 391: 357362.
  • 64
    Bafico P, Liu G, Yaniv A, Gazit A, Aaronson AA 2001 Novel mechanism of Wnt signaling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol 3: 683686.
  • 65
    Mao B, Niehrs C 2003 Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene 302: 179183.
  • 66
    Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, Delius J, Hoppe D, Stannek P, Walter C, Glinka A, Niehrs C 2002 Kremen proteins are Dickkopf receptors that regulate Wnt/B-catenin signalling. Nature 417: 664667.
  • 67
    Fujino T, Asaba MJ, Kang M, Ikeda Y, Sone H, Takads S, Kim D, Loka R, Ono M, Tomoyori H, Okubo M, Murase T, Kmataki A, Yamamoto J, Magoori K, Takahashi S, Miyamoto Y, Oishi H, Nose M, Okazaki M, Usui S, Imaizumi K, Yanagisawa M, Sakai J, Yamamoto T 2003 Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc Natl Acad Sci USA 100: 229234.
  • 68
    Kato M, Patel MS, Levasseur R, Lobov I, Chang BH-J, Glass DAI, Hartmann C, Li L, Hwang TH, Brayton CF, Lang RA, Karsenty G, Chan L 2002 Cbfa 1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 157: 303314.
  • 69
    Babij P, Zhao W, Small C, Kharode Y, Yaworsky P, Bouxsein M, Reddy P, Bodine P, Robinson J, Bhat B, Marzolf J, Moran R, Bex F 2003 High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res 18: 960974.
  • 70
    Akhter MP, Raab DM, Turner CH, Kimmel DB, Recker RR 1992 Characterization of an in vivo strain in the rat tibia during external application of a four-point bending load. J Biomechanics 25: 12411246.
  • 71
    Gong Y, Vikkula M, Boon L, Liu J, Beighton P, Ramesar R, Peltonen L, Somer H, Hirose T, Dallapiccola B, De Paepe A, Swoboda W, Zabel B, Superti-Furga A, Steinmann B, Brunner HG, Jans A, Boles RG, Adkins W, van den Boogaard MJ, Olsen BR, Warman ML 1996 Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11q12–13. Am J Hum Genet 59: 14651.
  • 72
    Johnson ML, Gong G, Kimberling WJ, Recker SM, Kimmel DK, Recker RR 1997 Linkage analysis of a high bone mass trait in humans. Am J Hum Genet 60: 13261332.
  • 73
    Janssens K, Van Hul W 2002 Molecular genetics of too much bone. Hum Mol Genet 11: 23852393.
  • 74
    Van Buchem, FSP, Hadder HN, Hansen JF, Woldring MG 1955 An uncommon familial systemic disease of the skeleton: Hyperostosis corticalis generalisata familiaris. Acta Radiol 44: 109120.
  • 75
    Beighton P, Cremin B, Faure C, Finidori G, Giedion A, Jequier S, Kaufman H, Labrune M, Lenzi L, Martoteaux P, Poszanski A, Sauvegrain R, Stanescu V 1984 International nomenclature of constitutional diseases of bone. Ann Radiol 27: 275280.
  • 76
    Worth HM, Wollin DG 1966 Hyperostosis corticalis generalisata congenita. J Can Assoc Radiol 17: 6774.
  • 77
    Wergedal JE, Veskovic K, Hellan M, Nyght C, Balemans W, Linbanati C, Vanhoenacker FM, Tan J, Baylink DJ, Van Hul W 2003 Patients with Van Buchem disease, an osteosclerotic genetic disease, have elevated bone formation markers, higher bone density, and greater derived polar moment of inertia than normal. J Clin Endocrinol Metab 88: 57785783.
  • 78
    Vanhoenacker FM, Balemans W, Tan GJ, Dikkers FG, De Schepper AM, Mathysen DG, Bernaerts A, Van Hul W 2003 Van Buchem disease: Lifetime evolution of radioclinical features. Skel Radiol 32: 708718.
  • 79
    Albers-Schonberg HE 1904 Rontegenbilder einer seltenen knockenerkrankung. Munch Med Wochenschr 51: 365368.
  • 80
    Bollerslev J 1989 Autosomal dominant osteopetrosis: Bone metabolism and epidemiological, clinical and hormonal aspects. Endocr Rev 101: 4567.
  • 81
    Bollerslev J, Anderson PE 1988 Radiological, biochemical and heredity evidence of two types of autosomal dominant osteopetrosis. Bone 9: 713.
  • 82
    Scopelliti D, Orsinin R, Ventucci D, Carratelli D 1999 Malattia di Van Buchem. Minerva Stomatol 48: 227234.
  • 83
    Brunkow ME, Gardner JC, Van-Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y, Alisch RS, Gillett L, Colbert T, Tacconi P, Galas D, Hamersma H, Beighton P, Mulligan J 2001 Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68: 577589.
  • 84
    Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W, Van Den Ende J, Willems P, Peas-Alvers AF, Hill S, Bueno M, Ramos FJ, Tacconi P, Dikkers FG, Stratakis C, Lindpainter K, Vickery B, Foernzler D, Van Hul W 2001 Increased bone density in sclerosteosis is due to the defiiency of a novel secreted protein. Hum Mol Genet 10: 537543.
  • 85
    Balemans W, Patel N, Ebling M, Van Hul E, Wuyts W, Lacza C, Dioszegi M, Dikkers FG, Hildering P, Willens PJ, Verheij JB, Lindpaintner K, Vickery B, Foernzler D, Van Hul W 2002 Identification of a 52 kb deletion downstream of the SOST gene in pateints with van Buchem disease. J Med Genet 39: 9197.
  • 86
    Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA 2003 Osteocyte control of bone formation via sclerotin, a novel BMP antagonist. EMBO J 22: 62676276.
  • 87
    Devoto M, Specchia C, Li H, Tenenhouse A, Rodriquez H, Spotila L 2001 Variance component linkage analysis indicates a QTL for femoral neck bone mineral density on chromosome 1p36. Hum Mol Genet 10: 24412452.
  • 88
    Deng HW, Shen H, Xu FH, Deng H, Conway T, Liu YJ, Liu YZ, Li JL, Huang QY, Davies KM, Recker RR 2003 Several genomic regions potentially containing QTLs for bone size variation were identified in a wholegenome linkage scan. Am J Med Genet 119A: 121131.
  • 89
    Kammerer CM, Schneider JL, Cole SA, Hixson JE, Samollow PB, O'Connell JR, Perez R, Dyer TD, Almasy KL, Blangero J, Bauer RL, Mitchell BD 2003 Quantitative trait loci on chromosomes 2p, 4p, and 13q influence bone mineral density of the forearm and hip in Mexican Americans. J Bone Miner Res 18: 22452252.
  • 90
    Koller DL, Econs MJ, Morin PA, Christian JC, Hui SL, Parry P, Curran ME, Rodriguez LA, Conneally PM, Joslyn G, Peacock M, Johnston CC, Foroud T 2001 Genome screen for QTLs contributing to normal variation in bone mineral density and osteoporosis. J Clin Endocrinol Metab 85: 31163120.
  • 91
    Klein RF, Mitchell SR, Phillips RJ, Belknap JK, Orwoll ES 1998 Quantitative trait loci affecting peak bone mieral density in mice. J Bone Miner Res 13: 16481656.
  • 92
    Beamer WG, Shultz KL, Donahue LR, Churchill GA, Sen S, Wergedal JR, Baylink DJ, Rosen CJ 2001 Quantitative trait loci for femoral and lumbar vertebral bone mineral density in C57BL/6J and C3H/HeJ inbred strains of mice. J Bone Miner Res 16: 11951206.
  • 93
    Yershov Y, Baldini TH, Villagomez S, Young T, Martin M, Bockman RS, Peterson MG, Blank RD 2001 Bone strength and related traits in HcB/Dem recombinant congenic mice. J Bone Miner Res 16: 9921003.
  • 94
    Benes H, Weinstein RS, Zheng W, Thaden JJ, Jilka RL, Manolagas SC, Shmookler-Reis RJ 2000 Chromosomal mapping of osteopenia-associated quantitative trait loci using closely related mouse strains. J Bone Miner Res 15: 626633.
  • 95
    Klein RF, Allard J, Anur Z, Nikolcheva T, Rotstein D, Carlos AS, Shea M, Waters R, Belknap J, Peltz G, Orwoll ES 2004 Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 303: 229232.
  • 96
    Ferrari S, Deutsch S, Choudhury N, Chevalley T, Bonjour J, Dermitzakis E, Rizzoli R, Antonarakis SE 2004 Polymorphisms in the low-density lipoprotein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am J Hum Genet 74: 866875.
  • 97
    Beals RK 1976 Endosteal hyperostosis. J Bone Joint Surg Am 58: 11721173.
  • 98
    Beals RK, McLoughlin SW, Teed RL, McDonald C 2001 Dominant endosteal hyperostosis. Skeletal characteristics and review of the literature. J Bone Joint Surg Am 83: 16431649.
  • 99
    Renton T, Odell E, Drage NA 2002 Differential diagnosis and treatment of autosomal dominant osteosclerosis of the mandible. Br J Oral Max Surg 40: 5559.
  • 100
    Russel WJ, Bizzozero OJ, Omori Y 1968 Idiopathic osteosclerosis. A report of 6 related cases. Radiology 90: 7076.
  • 101
    Beighton P 1988 Sclerosteosis. J Med Genet 25: 200203.
  • 102
    Beighton P, Barnard A, Hamersma H, van der Wouden A 1984 The syndromic status of sclerosteosis and van Buchem disease. Clin Genet 25: 175181.
  • 103
    Eastman JR, Bixler D 1977 Generalized cortical hyperostosis (Van Buchem disease): Nosologic considerations. Radiology 125: 297304.