SEARCH

SEARCH BY CITATION

References

  • 1
    Beck TJ, Ruff CB, Bissessur K 1993 Age-related changes in female femoral neck geometry: Implications for bone strength. Calcif Tissue Int 53(Suppl 1):S41S46.
  • 2
    Cordey J, Schneider M, Buhler M 2000 The epidemiology of fractures of the proximal femur. Injury 31(Suppl 3):C56C61.
  • 3
    Courtney AC, Wachtel EF, Myers ER, Hayes WC 1995 Age-related reductions in the strength of the femur tested in a fall-loading configuration. J Bone Joint Surg Am 77:387395.
  • 4
    Hayes WC, Myers ER, Robinovitch SN, Van Den Kroonenberg A, Courtney AC, McMahon TA 1996 Etiology and prevention of age-related hip fractures. Bone 18(1 Suppl):77S86S.
  • 5
    Nakamura T, Turner CH, Yoshikawa T, Slemenda CW, Peacock M, Burr DB, Mizuno Y, Orimo H, Ouchi Y, Johnston CC Jr 1994 Do variations in hip geometry explain differences in hip fracture risk between Japanese and white Americans. J Bone Miner Res 9:10711076.
  • 6
    Singh M, Nagrath AR, Maini PS 1970 Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am 52:457467.
  • 7
    Corcoran TA, Sandler RB, Myers ER, Lebowitz HH, Hayes WC 1994 Calculation of cross-sectional geometry of bone from CT images with application in postmenopausal women. J Comput Assist Tomogr 18:626633.
  • 8
    Ferretti JL, Capozza RF, Zanchetta JR 1996 Mechanical validation of a tomographic (pQCT) index for noninvasive estimation of rat femur bending strength. Bone 18:97102.
  • 9
    Horikoshi T, Endo N, Uchiyama T, Tanizawa T, Takahashi HE 1999 Peripheral quantitative computed tomography of the femoral neck in 60 Japanese women. Calcif Tissue Int 65:447453.
  • 10
    Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, Genant HK 1997 Volumetric quantitative computed tomography of the proximal femur: Precision and relation to bone strength. Bone 21:101108.
  • 11
    Lochmüller EM, Groll O, Kuhn V, Eckstein F 2002 Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius. Bone 30:207216.
  • 12
    Lotz JC, Hayes WC 1990 The use of quantitative computed tomography to estimate risk of fracture of the hip from falls. J Bone Joint Surg Am 72:689700.
  • 13
    Rauch F, Neu C, Manz F, Schoenau E 2001 The development of metaphyseal cortex-implications for distal radius fractures during growth. J Bone Miner Res 16:15471555.
  • 14
    Rittweger J, Beller G, Ehrig J, Jung C, Koch U, Ramolla J, Schmidt F, Newitt D, Majumdar S, Schiessl H, Felsenberg D 2000 Bone-muscle strength indices for the human lower leg. Bone 27:319326.
  • 15
    Schiessl H, Ferretti JL, Tysarczyk-Niemeyer G, Willnecker J 1996 Noninvasive bone strength index as analyzed by peripheral quantitative computed tomography (pQCT). In: SchoenauE (ed.) Pediatric Osteology: New Developments in Diagnostics and Therapy. Elsevier Science, Amsterdam, The Netherlands, pp. 141146.
  • 16
    Sievanen H, Koskue V, Rauhio A, Kannus P, Heinonen A, Vuori I 1998 Peripheral quantitative computed tomography in human long bones: Evaluation of in vitro and in vivo precision. J Bone Miner Res 13:871882.
  • 17
    Cheng XG, Lowet G, Boonen S, Nicholson PH, Brys P, Nijs J, Dequeker J 1997 Assessment of the strength of proximal femur in vitro: Relationship to femoral bone mineral density and femoral geometry. Bone 20:213218.
  • 18
    Whealan KM, Kwak SD, Tedrow JR, Inoue K, Snyder BD 2000 Noninvasive imaging predicts failure load of the spine with simulated osteolytic defects. J Bone Joint Surg Am 82:12401251.
  • 19
    Hong J, Cabe GD, Tedrow JR, Hipp JA, Snyder BD 2004 Failure of trabecular bone with simulated lytic defects can be predicted non-invasively by structural analysis. J Orthop Res 22:479486.
  • 20
    Martin DE, Severns AE, Kabo JM 2004 Determination of mechanical stiffness of bone by pQCT measurements: Correlation with non-destructive mechanical four-point bending test data. J Biomech 37:12891293.
  • 21
    Bergmann G, Graichen F, Rohlmann A 1993 Hip joint loading during walking and running, measured in two patients. J Biomech 26:969990.
  • 22
    Backman S 1957 The proximal end of the femur: Investigations with special reference to the etiology of femoral neck fractures; anatomical studies; roentgen projections; theoretical stress calculations; experimental production of fractures. Acta Radiol Suppl 146:1166.
  • 23
    Gies AA, Carter DR 1982 Experimental determination of whole long bone sectional properties. J Biomech 15:297303.
  • 24
    Carter DR, Caler WE, Harris WH 1981 Resultant loads and elastic modulus calibration of long bone cross sections. J Biomech 14:739745.
  • 25
    Morgan EF, Keaveny TM 2001 Dependence of yield strain of human trabecular bone on anatomic site. J Biomech 34:569577.
  • 26
    Kaneko TS, Pejcic MR, Tehranzadeh J, Keyak JH 2003 Relationships between material properties and CT scan data of cortical bone with and without metastatic lesions. Med Eng Phys 25:445454.
  • 27
    Faulkner KG, Gluer CC, Grampp S, Genant HK 1993 Cross-calibration of liquid and solid QCT calibration standards: Corrections to the UCSF normative data. Osteoporos Int 3:3642.
  • 28
    Lotz JC, Gerhart TN, Hayes WC 1990 Mechanical properties of trabecular bone from the proximal femur: A quantitative CT study. J Comput Assist Tomogr 14:107114.
  • 29
    Orr TE, Beaupre GS, Carter DR, Schurman DJ 1990 Computer predictions of bone remodeling around porous-coated implants. J Arthroplasty 5:191200.
  • 30
    Fox JC, Keaveny TM 2001 Trabecular eccentricity and bone adaptation. J Theor Biol 212:211221.
  • 31
    Greenspan SL, Myers ER, Maitland LA, Resnick NM, Hayes WC 1994 Fall severity and bone mineral density as risk factors for hip fracture in ambulatory elderly. JAMA 271:128133.
  • 32
    Hayes WC, Myers ER, Morris JN, Gerhart TN, Yett HS, Lipsitz LA 1993 Impact near the hip dominates fracture risk in elderly nursing home residents who fall. Calcif Tissue Int 52:192198.
  • 33
    Nevitt MC, Cummings SR 1993 Type of fall and risk of hip and wrist fractures: The study of osteoporotic fractures. The Study of Osteoporotic Fractures Research Group. J Am Geriatr Soc 41:12261234.
  • 34
    Pinilla TP, Boardman KC, Bouxsein ML, Myers ER, Hayes WC 1996 Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif Tissue Int 58:231235.
  • 35
    Ford CM, Keaveny TM, Hayes WC 1996 The effect of impact direction on the structural capacity of the proximal femur during falls. J Bone Miner Res 11:377383.
  • 36
    van den Kroonenberg AJ, Hayes WC, McMahon TA 1996 Hip impact velocities and body configurations for voluntary falls from standing height. J Biomech 29:807811.
  • 37
    Muckle DS 1977 Femoral Neck Fractures and Hip Joint Injuries, John Wiley and Sons, New York.
  • 38
    Beck TJ, Oreskovic TL, Stone KL, Ruff CB, Ensrud K, Nevitt MC, Genant HK, Cummings SR 2001 Structural adaptation to changing skeletal load in the progression toward hip fragility: The study of osteoporotic fractures. J Bone Miner Res 16:11081119.
  • 39
    Kaptoge S, Dalzell N, Loveridge N, Beck TJ, Khaw KT, Reeve J 2003 Effects of gender, anthropometric variables, and aging on the evolution of hip strength in men and women aged over 65. Bone 32d:561570.
  • 40
    Kuiper JW, Van Kuijk C, Grashuis JL 1997 Distribution of trabecular and cortical bone related to geometry. A quantitative computed tomography study of the femoral neck. Invest Radiol 32:8389.
  • 41
    Carter DR, Hayes WC 1977 The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am 59:954962.
  • 42
    Morgan EF, Bayraktar HH, Keaveny TM 2003 Trabecular bone modulus-density relationships depend on anatomic site. J Biomech 36:897904.