SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Janssens K, Van Hul W 2002 Molecular genetics of too much bone. Hum Mol Genet 11: 23852393.
  • 2
    van Bezooijen RL, ten Dijke P, Papapoulos SE, Lowik CW 2005 SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev 16: 319327.
  • 3
    Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W, Van Den EJ, Willems P, Paes-Alves AF, Hill S, Bueno M, Ramos FJ, Tacconi P, Dikkers FG, Stratakis C, Lindpaintner K, Vickery B, Foernzler D, Van Hul W 2001 Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10: 537543.
  • 4
    Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, Dioszegi M, Dikkers FG, Hildering P, Willems PJ, Verheij JB, Lindpaintner K, Vickery B, Foernzler D, Van Hul W 2002 Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet 39: 9197.
  • 5
    Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y, Alisch RS, Gillett L, Colbert T, Tacconi P, Galas D, Hamersma H, Beighton P, Mulligan J 2001 Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68: 577589.
  • 6
    Staehling-Hampton K, Proll S, Paeper BW, Zhao L, Charmley P, Brown A, Gardner JC, Galas D, Schatzman RC, Beighton P, Papapoulos S, Hamersma H, Brunkow ME 2002 A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet 110: 144152.
  • 7
    Gardner JC, van Bezooijen RL, Mervis B, Hamdy NA, Lowik CW, Hamersma H, Beighton P, Papapoulos SE 2005 Bone mineral density in sclerosteosis. Affected individuals and gene carriers. J Clin Endocrinol Metab 90: 63926395.
  • 8
    Wergedal JE, Veskovic K, Hellan M, Nyght C, Balemans W, Libanati C, Vanhoenacker FM, Tan J, Baylink DJ, Van Hul W 2003 Patients with Van Buchem disease, an osteosclerotic genetic disease, have elevated bone formation markers, higher bone density, and greater derived polar moment of inertia than normal. J Clin Endocrinol Metab 88: 57785783.
  • 9
    Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA 2003 Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22: 62676276.
  • 10
    van Bezooijen RL, Roelen BA, Visser A, Wee-Pals L, de Wilt E, Karperien M, Hamersma H, Papapoulos SE, ten Dijke P, Lowik CW 2004 Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199: 805814.
  • 11
    Loots GG, Kneissel M, Keller H, Baptist M, Chang J, Collette NM, Ovcharenko D, Plajzer-Frick I, Rubin EM 2005 Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res 15: 928935.
  • 12
    Avsian-Kretchmer O, Hsueh AJ 2004 Comparative genomic analysis of the eight-membered ring cystine knot-containing bone morphogenetic protein antagonists. Mol Endocrinol 18: 112.
  • 13
    Semenov M, Tamai K, He X 2005 SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 280: 2677026775.
  • 14
    Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D 2005 Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280: 1988319887.
  • 15
    van Bezooijen RL, Svensson JP, Eefting D, Visser A, van der HG, Karperien M, Quax PH, Vrieling H, Papapoulos SE, ten Dijke P, Lowik CW 2007 Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J Bone Miner Res 22: 1928.
  • 16
    Semenov MV, He X 2006 LRP5 mutations linked to high bone mass diseases cause reduced LRP5 binding and inhibition by SOST. J Biol Chem 281: 3827638284.
  • 17
    Ellies DL, Viviano B, McCarthy J, Rey JP, Itasaki N, Saunders S, Krumlauf R 2006 Bone density ligand, sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res 21: 17381749.
  • 18
    Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Lowik CW, Reeve J 2005 Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 19: 18421844.
  • 19
    Martin RB 2000 Does osteocyte formation cause the nonlinear refilling of osteons? Bone 26: 7178.
  • 20
    Sutherland MK, Geoghegan JC, Yu C, Winkler DG, Latham JA 2004 Unique regulation of SOST, the sclerosteosis gene, by BMPs and steroid hormones in human osteoblasts. Bone 35: 448454.
  • 21
    Keller H, Kneissel M 2005 SOST is a target gene for PTH in bone. Bone 37: 148158.
  • 22
    Martin JF, Schwarz JJ, Olson EN 1993 Myocyte enhancer factor (MEF) 2C: A tissue-restricted member of the MEF-2 family of transcription factors. Proc Natl Acad Sci USA 90: 52825286.
  • 23
    Molkentin JD, Black BL, Martin JF, Olson EN 1996 Mutational analysis of the DNA binding, dimerization, and transcriptional activation domains of MEF2C. Mol Cell Biol 16: 26272636.
  • 24
    Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O'Brien CA, Manolagas SC, Jilka RL 2005 Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: A novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146: 45774583.
  • 25
    Mayr B, Montminy M 2001 Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2: 599609.
  • 26
    Seino S, Shibasaki T 2005 PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 85: 13031342.
  • 27
    Chin KV, Yang WL, Ravatn R, Kita T, Reitman E, Vettori D, Cvijic ME, Shin M, Iacono L 2002 Reinventing the wheel of cyclic AMP: Novel mechanisms of cAMP signaling. Ann N Y Acad Sci 968: 4964.
  • 28
    Swarthout JT, D'Alonzo RC, Selvamurugan N, Partridge NC 2002 Parathyroid hormone-dependent signaling pathways regulating genes in bone cells. Gene 282: 117.
  • 29
    Qin L, Qiu P, Wang L, Li X, Swarthout JT, Soteropoulos P, Tolias P, Partridge NC 2003 Gene expression profiles and transcription factors involved in parathyroid hormone signaling in osteoblasts revealed by microarray and bioinformatics. J Biol Chem 278: 1972319731.
  • 30
    Kondo H, Guo J, Bringhurst FR 2002 Cyclic adenosine monophosphate/protein kinase A mediates parathyroid hormone/parathyroid hormone-related protein receptor regulation of osteoclastogenesis and expression of RANKL and osteoprotegerin mRNAs by marrow stromal cells. J Bone Miner Res 17: 16671679.
  • 31
    Halladay DL, Miles RR, Thirunavukkarasu K, Chandrasekhar S, Martin TJ, Onyia JE 2001 Identification of signal transduction pathways and promoter sequences that mediate parathyroid hormone 1–38 inhibition of osteoprotegerin gene expression. J Cell Biochem 84: 111.
  • 32
    Fu Q, Jilka RL, Manolagas SC, O'Brien CA 2002 Parathyroid hormone stimulates receptor activator of NFkappa B ligand and inhibits osteoprotegerin expression via protein kinase A activation of cAMP-response element-binding protein. J Biol Chem 277: 4886848875.
  • 33
    Lee SK, Lorenzo JA 2002 Regulation of receptor activator of nuclear factor-kappa B ligand and osteoprotegerin mRNA expression by parathyroid hormone is predominantly mediated by the protein kinase a pathway in murine bone marrow cultures. Bone 31: 252259.
  • 34
    Kawane T, Mimura J, Yanagawa T, Fujii-Kuriyama Y, Horiuchi N 2003 Parathyroid hormone (PTH) down-regulates PTH/PTH-related protein receptor gene expression in UMR-106 osteoblast-like cells via a 3′,5′-cyclic adenosine monophosphate-dependent, protein kinase A-independent pathway. J Endocrinol 178: 247256.
  • 35
    Kawane T, Mimura J, Fujii-Kuriyama Y, Horiuchi N 2001 Parathyroid hormone (PTH) suppresses rat PTH/PTH-related protein receptor gene promoter. Biochem Biophys Res Commun 287: 313322.
  • 36
    Arnold MA, Kim Y, Czubryt MP, Phan D, McAnally J, Qi X, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN 2007 MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell 12: 377389.
  • 37
    Olson EN, Perry M, Schulz RA 1995 Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors. Dev Biol 172: 214.
  • 38
    McKinsey TA, Zhang CL, Olson EN 2002 MEF2: A calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27: 4047.
  • 39
    Lin Q, Schwarz J, Bucana C, Olson EN 1997 Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276: 14041407.
  • 40
    Naya FJ, Black BL, Wu H, Bassel-Duby R, Richardson JA, Hill JA, Olson EN 2002 Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nat Med 8: 13031309.
  • 41
    Han J, Molkentin JD 2000 Regulation of MEF2 by p38 MAPK and its implication in cardiomyocyte biology. Trends Cardiovasc Med 10: 1922.
  • 42
    Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA 2004 Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 24: 83748385.
  • 43
    Youn HD, Sun L, Prywes R, Liu JO 1999 Apoptosis of T cells mediated by Ca2+-induced release of the transcription factor MEF2. Science 286: 790793.
  • 44
    McKinsey TA, Zhang CL, Lu J, Olson EN 2000 Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408: 106111.
  • 45
    Sutherland MK, Geoghegan JC, Yu C, Turcott E, Skonier JE, Winkler DG, Latham JA 2004 Sclerostin promotes the apoptosis of human osteoblastic cells: A novel regulation of bone formation. Bone 35: 828835.
  • 46
    Youn HD, Chatila TA, Liu JO 2000 Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. EMBO J 19: 43234331.
  • 47
    Mao Z, Bonni A, Xia F, Nadal-Vicens M, Greenberg ME 1999 Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286: 785790.