• 1
    Ettinger B, Black DM, Nevitt MC, et al. Contribution of vertebral deformities to chronic back pain and disability. J Bone Miner Res. 1992; 7: 449456.
  • 2
    Oleksik A, Lips P, Dawson A, et al. Health-related quality of life in post-menopausal women with low BMD with or without prevalent vertebral fracture. J Bone Miner Res. 2000; 15: 13841392.
  • 3
    Felsenberg D and the European Prospective Osteoporosis Study (EPOS) Group. Incidence of vertebral fracture in Europe: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res. 2002; 17: 7167124.
  • 4
    Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996; 312: 12541259.
  • 5
    World Health Organization. Assessment of Fracture Risk and Its Application to Screening for Post-menopausal Osteoporosis. Geneva: WHO; 1994.
  • 6
    McDonnell P, McHugh PE, O'Mahoney D. Vertebral osteoporosis and trabecular bone quality. Ann Biomed Eng. 2007; 35: 170189.
  • 7
    Sornay-Rendu E, Munoz F, Garnero P, Duboeuf F, Delmas PD. Identification of osteopenic women at high risk of fracture: the OFELY study. J Bone Miner Res. 2005; 20: 18131819.
  • 8
    Siris ES, Chen YT, Abbott TA, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004; 164: 11081112.
  • 9
    Schuit SCE, van der Klift M, Weel AEAM, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone. 2004; 34: 195202.
  • 10
    Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone. 2007; 41: 946957.
  • 11
    Buckley JM, Loo K, Motherway J. Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone. 2007; 40: 767774.
  • 12
    Ebbesen EN, Thomsen JS, Beck-Nielsen H, Nepper-Rasmussen HJ, Mosekilde L. Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography and ashing. Bone. 1999; 25: 713724.
  • 13
    Eswaran SK, Gupta A, Adams MF, Keaveny TM. Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res. 2006; 21: 307314.
  • 14
    Ritzel H, Amling M, Pösl M, Hahn M, Delling G. The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirty-seven autopsy specimens. J Bone Miner Res. 1997; 12: 8995.
  • 15
    Silva MJ, Wang C, Keaveny TM, Hayes WC. Direct and computed tomography thickness measurements of the human vertebral shell and endplate. Bone. 1994; 15: 409414.
  • 16
    Martin RB, Sharkey NA. Mechanical effects of post-mortem changes, preservation, and allograft bone treatments. In: CowinSC, ed. Bone Mechanics Handbook 2nd ed. Boca Raton, FL: CRC Press, 2001; 20.120.24.
  • 17
    Ashman RB, Donofrio M, Cowin SC, van Buskirk WC. Postmortem changes in the elastic properties of trabecular bone. Trans Orthop Res Soc. 1982; 7: 6367.
  • 18
    Eastell R, Cedel SL, Wahner HW, Riggs BL, Melton LJ. Classification of vertebral fractures. J Bone Miner Res. 1991; 6: 207215.
  • 19
    Seeman E, Delmas PD. Bone quality: the material and structural basis of bone strength and fragility. N Engl J Med. 2006; 354: 22502261.
  • 20
    Keaveny TM, Hayes WC, A 20-year perspective on the mechanical properties of trabecular bone. J Biomech Eng. 1993; 115: 534542.
  • 21
    Stauber M, Muller R. Volumetric spatial decomposition of trabecular bone into rods and plates-a new method for local bone morphometry. Bone. 2006; 38: 475484.
  • 22
    Vesterby A, Mosekilde L, Gundersen HJG, Melsen F, Holme K, Sorensen S. Biomechanically meaningful determinants of the in vitro strength of lumbar vertebrae. Bone. 1991; 12: 219224.
  • 23
    Cendre E, Mitton D, Roux JP, et al. High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics. Osteoporos Int. 1999; 10: 353360.
  • 24
    Rockoff SD, Sweet E, Bleustein J. The relative contribution of trabecular and cortical bone to the strength of human lumbar verterbrae. Calcif Tissue Res. 1969; 3: 163175.
  • 25
    Mosekilde L. Vertebral structure and strength in vivo and in vitro. Calcif Tissue Int. 1993; 53: S121S126.
  • 26
    Riggs BL, Melton LJ. Involutions osteoporosis. N Engl J Med. 1986; 314: 16761686.
  • 27
    Andresen R, Werner HJ, Schober HC. Contribution of the cortical shell of vertebrae to mechanical behavior of the lumbar vertebrae with implications for predicting fracture risk. Br J Radiol. 1998; 71: 759765.
  • 28
    McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA. Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg Am. 1985; 67: 12061214.
  • 29
    Homminga J, van Rietbergen B, Lochmuller E, Weinans H, Eckstein F, Huiskes R. The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone. 2004; 34: 510516.
  • 30
    Faulker KG, Cann CE, Hasegawa BH. Effect of bone distribution on vertebral strength: assessment with a patient-specific non linear finite element analysis. Radiology. 1991; 179: 669674.
  • 31
    Crawford RP, Keaveny TM. Relationship between axial and bending behaviors of the human thoracolumbar vertebra. Spine. 2004; 29: 22482255.
  • 32
    Duan Y, Seeman E, Turner CH. The biomechanical basis of vertebral body fragility in men and women. J Bone Miner Res. 2001; 12: 22762283.
  • 33
    Gourion-Arsiquaud S, Faibish D, Myers E, et al., Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res. 2009; 24: 15651571.