SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Marks CSJ, Hermey DC 1996 The structure and development of bone. In: BilezikianJP, RaiszLG, RodanGA (eds.) Principles of Bone Biology. Academic Press, New York, NY, U.S.A., pp. 314.
  • 2
    Kurzchalia TE 1995 Guilt by insolubility—does a protein's detergent insolubility reflect caveolar location? Trends Cell Biol 5:187189.
  • 3
    Schnitzer JE, McIntosh DP, Dvorak AM, Liu J, Oh P 1995 Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269:14351439.
  • 4
    Solomon KR, Rudd CE, Finberg RW 1996 The association between glycosylphosphatidylinositol-anchored proteins and heterotrimeric G protein alpha subunits in lymphocytes. Proc Natl Acad Sci USA 93:60536058.
  • 5
    Solomon KR, Kurt-Jones EA, Saladino RA, Stack AM, Dunn IF, Ferretti M, Golenbock D, Fleisher GR, Finberg RW 1998 Heterotrimeric G proteins physically associated with the lipopolysaccharide receptor CD14 modulate both in vivo and in vitro responses to lipopolysaccharide. J Clin Invest 102:20192027.
  • 6
    Solomon KR, Mallory MA, Finberg RW 1998 Determination of the non-ionic detergent insolubility and phosphoprotein associations of glycosylphosphatidylinositol-anchored proteins expressed on T cells. Biochem J 334:325333.
  • 7
    Solomon KR, Mallory MA, Hanify KA, Finberg RW 1998 The nature of membrane anchorage determines kinase association and detergent solubility of CD4. Biochem Biophys Res Commun 242:423428.
  • 8
    Stefanova I, Horejsi V, Ansotegui IJ, Knapp W, Stockinger H 1991 GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 254:10161019.
  • 9
    Liu J, Oh P, Horner T, Rogers RA, Schnitzer JE 1997 Organized endothelial cell surface signal transduction in caveolae distinct from glycosylphosphatidylinositol-anchored protein microdomains. J Biol Chem 272:72117222.
  • 10
    Schnitzer JE, Oh P, Jacobson BS, Dvorak AM 1995 Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca(2+)-ATPase, and inositol trisphosphate receptor. Proc Natl Acad Sci USA 92:17591763.
  • 11
    Palade GE 1953 Fine structure of blood capillaries. J Appl Phys 24:1424.
  • 12
    Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG 1992 Caveolin, a protein component of caveolae membrane coats. Cell 68:673682.
  • 13
    Yamada E 1955 The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1:445458.
  • 14
    Fra AM, Williamson E, Simons K, Parton RG 1994 Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J Biol Chem 269:3074530748.
  • 15
    Fra AM, Williamson E, Simons K, Parton RG 1995 De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc Natl Acad Sci USA 92:86558659.
  • 16
    Anderson RGW, Kamen BA, Rothberg KG, Lacey SW 1992 Potocytosis: Sequestration and transport of small molecules by caveolae. Science 255:410411.
  • 17
    Liu P, Ying Y, Anderson RG 1997 Platelet-derived growth factor activates mitogen-activated protein kinase in isolated caveolae. Proc Natl Acad Sci USA 94:1366613670.
  • 18
    Liu P, Ying Y, Ko YG, Anderson RG 1996 Localization of platelet-derived growth factor-stimulated phosphorylation cascade to caveolae. J Biol Chem 271:1029910303.
  • 19
    Parton RG 1996 Caveolae and caveolins. Curr Opin Cell Biol 8:542548.
  • 20
    Rizzo V, Sung A, Oh P, Schnitzer JE 1998 Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J Biol Chem 273:2632326329.
  • 21
    Rizzo V, McIntosh DP, Oh P, Schnitzer JE 1998 In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J Biol Chem 273:3472434729.
  • 22
    Sargiacomo M, Sudol M, Tang Z, Lisanti MP 1993 Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol 122:789807.
  • 23
    Schnitzer JE, Liu J, Oh P 1995 Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J Biol Chem 270:1439914404.
  • 24
    Schnitzer JE, Oh P 1996 Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water channels across lung endothelium. Am J Physiol 270:H416H422.
  • 25
    Smart EJ, Foster DC, Ying YS, Kamen BA, Anderson RG 1994 Protein kinase C activators inhibit receptor-mediated potocytosis by preventing internalization of caveolae. J Cell Biol 124:307313.
  • 26
    Chun M, Liyanage UK, Lisanti MP, Lodish HF 1994 Signal transduction of a G protein-coupled receptor in caveolae: Colocalization of endothelin and its receptor with caveolin. Proc Natl Acad Sci USA 91:1172811732.
  • 27
    Horvat R, Palade GE 1993 Thrombomodulin and thrombin localization on the vascular endothelium; their internalization and transcytosis by plasmalemmal vesicles. Eur J Cell Biol 61:299313.
  • 28
    Fujimoto T 1993 Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol 120:11471157.
  • 29
    Fujimoto T, Nakade S, Miyawaki A, Mikoshiba K, Ogawa K 1992 Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae. J Cell Biol 119:15071513.
  • 30
    Li S, Okamoto T, Chun M, Sargiacomo M, Casanova JE, Hansen SH, Nishimoto I, Lisanti MP 1995 Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem 270:1569315701.
  • 31
    Li S, Couet J, Lisanti MP 1996 Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271:2918229190.
  • 32
    Song SK, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP 1996 Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem 271:96909697.
  • 33
    Scherer PE, Tang Z, Chun M, Sargiacomo M, Lodish HF, Lisanti MP 1995 Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform-specific monoclonal antibody probe. J Biol Chem 270:1639516401.
  • 34
    Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M, Chu C, Kohtz DS, Lisanti MP 1996 Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 271:1516015165.
  • 35
    Venema VJ, Ju H, Zou R, Venema RC 1997 Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain. J Biol Chem 272:2818728190.
  • 36
    Engelman JA, Chu C, Lin A, Jo H, Ikezu T, Okamoto T, Kohtz DS, Lisanti MP 1998 Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett 428:205211.
  • 37
    Feron O, Michel JB, Sase K, Michel T 1998 Dynamic regulation of endothelial nitric oxide synthase: Complementary roles of dual acylation and caveolin interactions. Biochemistry 37:193200.
  • 38
    Garcia-Cardena G, Fan R, Stern DF, Liu J, Sessa WC 1996 Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J Biol Chem 271:2723727240.
  • 39
    Harris SA, Enger RJ, Riggs BL, Spelsberg TC 1995 Development and characterization of a conditionally immortalized human fetal osteoblastic cell line. J Bone Miner Res 10:178186.
  • 40
    Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S 1983 In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96:191198.
  • 41
    Schnitzer JE, Oh P, McIntosh DP 1996 Role of GTP hydrolysis in fission of caveolae directly from plasma membranes [published erratum appears in Science 1996; 274:1069]. Science 274:239242.
  • 42
    Conrad PA, Smart EJ, Ying YS, Anderson RG, Bloom GS 1995 Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps. J Cell Biol 131:14211433.
  • 43
    Smart EJ, Ying YS, Conrad PA, Anderson RG 1994 Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J Cell Biol 127:11851197.
  • 44
    Thyberg J, Roy J, Tran PK, Blomgren K, Dumitrescu A, Hedin U 1997 Expression of caveolae on the surface of rat arterial smooth muscle cells is dependent on the phenotypic state of the cells. Lab Invest 77:93101.
  • 45
    Brown DA, Rose JK 1992 Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533544.
  • 46
    Cerneus DP, Ueffing E, Posthuma G, Strous GJ, van der Ende A 1993 Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis. Role of cholesterol. J Biol Chem 268:31503155.
  • 47
    Schroeder R, London E, Brown D 1994 Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci USA 91:1213012134.
  • 48
    Hooper NM, Turner AJ 1988 Ectoenzymes of the kidney microvillar membrane. Differential solubilization by detergents can predict a glycosyl-phosphatidylinositol membrane anchor. Biochem J 250:865869.
  • 49
    Hooper NM, Turner AJ 1988 Ectoenzymes of the kidney microvillar membrane. Aminopeptidase P is anchored by a glycosyl-phosphatidylinositol moiety. FEBS Lett 229:340344.
  • 50
    Hanada K, Nishijima M, Akamatsu Y, Pagano RE 1995 Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J Biol Chem 270:62546260.
  • 51
    Parolini I, Sargiacomo M, Galbiati F, Rizzo G, Grignani F, Engelman JA, Okamoto T, Ikezu T, Scherer PE, Mora R, Rodriguez-Boulan E, Peschle C, Lisanti MP 1999 Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. Retention of caveolin-2 at the level of the Golgi complex. J Biol Chem 274:2571825725.
  • 52
    Mora R, Bonilha VL, Marmorstein A, Scherer PE, Brown D, Lisanti MP, Rodriguez-Boulan E 1999 Caveolin-2 localizes to the Golgi complex but redistributes to plasma membrane, caveolae, and rafts when co-expressed with caveolin-1. J Biol Chem 274:2570825717.
  • 53
    Solomon KR, Adolphson LD, Hecht LE, Danciu TE, Hauschka PV 2000 Caveolin-enriched membrane signaling complexes in human and murine osteoblasts. J Bone Miner Res 15:23802390.