• cortical bone;
  • quantitative computed tomography;
  • bone mineral density;
  • mandible;
  • growth


Quantitative computed tomography (QCT) was completed in 34 subjects between the ages of 9 and 33 years with symmetrical mandibles in order to investigate the three-dimensional cortical bone mineral density (BMD) distribution in the mandible. The number and distribution of the pixels were determined at three levels: (1) representing the entire mandibular bone; (2) the cortical bone at 60% above the baseline defined as the segmentation level (around 1050 mg/cm3) and representative of only cortical bone; and (3) the highest mineralized cortical bone (>1250 mg/cm3). The geometrical distribution of the highest mineralized areas was evaluated by three-dimensional reconstruction of the images. The total number of pixels for the entire mandible increased significantly at each time point represented at four increasing ages groups (9–11 years of age, 12–14 years of age, 15–17 years of age, and >18 years of age). The male and female subjects had a similar total number of pixels for the entire mandible before the age of 11, but the male subjects showed a significantly larger total number of mandibular pixels after that age. Comparison of the number of pixels for pure cortical bone (60% segmentation level) and the highest mineralized cortical bone indicated a significant increase with maturation with the greatest change occurring between the 13-year and 16-year age groups. However, the ratio of cortical bone/total bone increased at a more rapid rate in the male subjects and reached a plateau by the 16-year age group, showing distinct differences in mineralization of the mandible between the sexes.