Stimulatory Effect of Insulin-Like Growth Factor Binding Protein-5 on Mouse Osteoclast Formation and Osteoclastic Bone-Resorbing Activity

Authors


Abstract

Insulin-like growth factor binding protein-5 (IGFBP-5) stimulates osteoblast proliferation directly or indirectly through IGF-I action, but its effects on osteoclast formation and osteoclastic activity are unknown. We tested the effects of IGFBP-5 on osteoclastic activity and osteoclast formation. IGFBP-5 significantly stimulated pit formation by pre-existent osteoclasts in mouse bone cell cultures and its stimulatory effect was completely blocked by IGF-I antibody (Ab). However, IGFBP-5 did not affect the bone-resorbing activity of isolated rabbit osteoclasts. When IGFBP-5 was added to unfractionated bone cells after degeneration of pre-existent osteoclasts, IGFBP-5 (77 pM–7.7 nM) dose-dependently stimulated osteoclast-like cell formation, irrespective of the presence of IGF-I Ab. Moreover, osteoclast-like cells newly formed by IGFBP-5 from unfractionated bone cells possessed the ability to form pits on dentine slices. We next examined the direct effect of IGFBP-5 on osteoclast precursors in the absence of stromal cells, using hemopoietic blast cells derived from spleen cells. IGFBP-5 dose-dependently stimulated osteoclast-like cell formation from osteoclast precursors, irrespective of the presence of IGF-I Ab. Growth hormone (GH) as well as IGF-I significantly stimulated bone resorption by pre-existent osteoclasts in mouse bone cell cultures and these stimulatory effects were completely blocked by IGF-I Ab. GH as well as IGF-I stimulated osteoclast-like cell formation from unfractionated bone cells and this stimulatory effect of GH was significantly but partially blocked by IGF-I Ab. The direct stimulatory effect of GH on osteoclast-like cell formation from hemopoietic blast cells was not affected by IGF-I Ab. The present data indicate that IGFBP-5 stimulates bone resorption both by stimulation of osteoclast formation in an IGF-I–independent fashion and by IGF-I–dependent activation of mature osteoclasts, possibly via osteoblasts, in vitro. (J Bone Miner Res 2000;15:902–910)

Ancillary