SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Smith DM, Nance WE, Kang KW, Christian JC, Johnston C Jr 1973 Genetic factors in determining bone mass. J Clin Invest 52:28002808.
  • 2
    Seeman E, Hopper JL, Bach LA, Cooper ME, Parkinson E, McKay J, Jerums G 1989 Reduced bone mass in daughters of women with osteoporosis. N Engl J Med 320:554558.
  • 3
    Gueguen R, Jouanny P, Guillemin F, Kuntz C, Pourel J, Siest G 1995 Segregation analysis and variance components analysis of bone mineral density in healthy families. J Bone Miner Res 10:20172022.
  • 4
    Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, Sambrook PN, Eisman JA 1994 Prediction of bone density from vitamin D receptor alleles. Nature 367:284287.
  • 5
    Sano M, Inoue S, Hosoi T, Ouchi Y, Emi M, Shiraki M, Orimo H 1995 Association of estrogen receptor dinucleotide repeat polymorphism with osteoporosis. Biochem Biophys Res Commun 217:378383.
  • 6
    Kobayashi S, Inoue S, Hosoi T, Ouchi Y, Shiraki M, Orimo H 1996 Association of bone mineral density with polymorphism of the estrogen receptor gene. J Bone Miner Res 11:306311.
  • 7
    Grant SF, Reid DM, Blake G, Herd R, Fogelman I, Ralston SH 1996 Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. Nat Genet 14:203205.
  • 8
    Shiraki M, Shiraki Y, Aoki C, Hosoi T, Inoue S, Kaneki M, Ouchi Y 1997 Association of bone mineral density with apolipoprotein E phenotype. J Bone Miner Res 12:14381445.
  • 9
    Hosoi T, Miyao M, Inoue S, Hoshino S, Shiraki M, Orimo H, Ouchi Y 1999 Association study of parathyroid hormone gene polymorphism and bone mineral density in Japanese postmenopausal women. Calcif Tissue Int 64:205208.
  • 10
    Devoto M, Shimoya K, Caminis J, Ott J, Tenenhouse A, Whyte MP, Sereda L, Hall S, Considine E, Williams CJ, Tromp G, Kuivaniemi H, Ala-Kokko L, Prockop DJ, Spotila LD 1998 First-stage autosomal genome screen in extended pedigrees suggests genes predisposing to low bone mineral density on chromosomes 1p, 2p and 4q. Eur J Hum Genet 6:151157.
  • 11
    Koller DL, Rodriguez LA, Christian JC, Slemenda CW, Econs MJ, Hui SL, Morin P, Conneally PM, Joslyn G, Curran ME, Peacock M, Johnston CC, Foroud T 1998 Linkage of a QTL contributing to normal variation in bone mineral density to chromosome 11q12-13. J Bone Miner Res 13:19031908.
  • 12
    Duncan EL, Brown MA, Sinsheimer J, Bell J, Carr AJ, Wordsworth BP, Wass JA 1999 Suggestive linkage of the parathyroid receptor type 1 to osteoporosis. J Bone Miner Res 14:19931999.
  • 13
    Niu T, Chen C, Cordell H, Yang J, Wang B, Wang Z, Fang Z, Schork NJ, Rosen CJ, Xu X 1999 A genome-wide scan for loci linked to forearm bone mineral density. Hum Genet 104:226233.
  • 14
    Matsushita M, Tsuboyama T, Kasai R, Okumura H, Yamamuro T, Higuchi K, Higuchi K, Kohno A, Yonezu T, Utani A, Umezawa M, Takeda T 1986 Age-related changes in bone mass in the senescence-accelerated mouse (SAM). SAM-R/3 and SAM-P/6 as new murine models for senile osteoporosis. Am J Pathol 125:276283.
  • 15
    Takeda T, Hosokawa M, Higuchi K 1994 Senescence-accelerated mouse (SAM). A novel murine model of aging. In: TakedaT (ed.) The SAM Model of Senescence. Elsevier Science B.V., Amsterdam, The Netherlands, pp. 1522.
  • 16
    Tsuboyama T, Takahashi K, Matsushita M, Okumura H, Yamamuro T, Umezawa M, Takeda T 1989 Decreased endosteal formation during cortical bone modelling in SAM-P/6 mice with a low peak bone mass. Bone Miner 7:112.
  • 17
    Tsuboyama T, Matsushita M, Okumura H, Yamamuro T, Hanada K, Takeda T 1989 Modification of strain-specific femoral bone density by bone marrow chimerism in mice: A study on the spontaneously osteoporotic mouse (SAMP/6). Bone 10:269277.
  • 18
    Tsuboyama T, Takahashi K, Yamamuro T, Hosokawa M, Takeda T 1993 Cross-mating study on bone mass in the spontaneously osteoporotic mouse (SAM-P/6). Bone Miner 23:5764.
  • 19
    Shimizu M, Higuchi K, Bennett B, Xia C, Tsuboyama T, Kasai S, Chiba T, Fujisawa H, Kogishi K, Kitado H, Kimoto M, Takeda N, Matsushita M, Okumura H, Serikawa T, Nakamura T, Johnson TE, Hosokawa M 1999 Identification of peak bone mass QTL in a spontaneously osteoporotic mouse strain. Mamm Genome 10:8187.
  • 20
    Flaherty L 1981 Congenic strains. In: FosterHL, SmallJD, FoxJG (eds.) The Mouse in Biomedical Research, vol. 1, History, Genetics, and Wild Mice. Academic Press, New York, NY, USA, pp. 215221.
  • 21
    Dietrich WF, Katz H, Lincoln SE, Shin HS, Friedman J, Dracapoli NC, Lander ES 1992 A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131:423447.
  • 22
    Dietrich WF, Miller J, Steen R, Merchant MA, Damron-Boles D, Husain Z, Dredge R, Daly MJ, Ingalls KA, O'Connor TJ, Evans CA, Deangelis MM, Levinson DM, Kruglyak L, Goodman N, Copeland NG, Jenkins NA, Hawkins TL, Stein L, Page DC, Lander ES 1996 A comprehensive genetic map of the mouse genome. Nature 380:149152.
  • 23
    Wicker LS, Todd JA, Prins JB, Podolin PL, Renjilian RJ, Peterson LB 1994 Resistance alleles at two non-major histocompatibility complex-linked insulin-dependent diabetes loci on chromosome 3, Idd3 and Idd10, protect nonobese diabetic mice from diabetes. J Exp Med 180:17051713.
  • 24
    Serreze DV, Prochazka M, Reifsnyder PC, Bridgett MM, Leiter EH 1994 Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene. J Exp Med 180:15531558.
  • 25
    Ikegami H, Makino S, Yamato E, Kawaguchi Y, Ueda H, Sakamoto T, Takekawa K, Ogihara T 1995 Identification of a new susceptibility locus for insulin-dependent diabetes mellitus by ancestral haplotype congenic mapping. J Clin Invest 96:19361942.
  • 26
    Yui MA, Muralidharan K, Moreno-Altamirano B, Perrin G, Chestnut K, Wakeland EK 1996 Production of congenic mouse strains carrying NOD-derived diabetogenic genetic intervals: An approach for the genetic dissection of complex traits. Mamm Genome 7:331334.
  • 27
    Morel L, Yu Y, Blenman KR, Caldwell RA, Wakeland EK 1996 Production of congenic mouse strains carrying genomic intervals containing SLE-susceptibility genes derived from the SLE-prone NZM2410 strain. Mamm Genome 7:335339.
  • 28
    Dukhanina OI, Dene H, Deng AY, Choi CR, Hoebee B, Rapp JP 1997 Linkage map and congenic strains to localize blood pressure QTL on rat chromosome 10. Mamm Genome 8:229235.
  • 29
    Deng AY, Dene H, Rapp JP 1997 Congenic strains for the blood pressure quantitative trait locus on rat chromosome 2. Hypertension 30:199202.
  • 30
    Zhang QY, Dene H, Deng AY, Garrett MR, Jacob HJ, Rapp JP 1997 Interval mapping and congenic strains for a blood pressure QTL on rat chromosome 13. Mamm Genome 8:636641.
  • 31
    Bailey DW 1981 Recombinant inbred strains and bilineal congenic strains. In: FosterHL, SmallJD, FoxJG (eds.) The Mouse in Biomedical Research. Academic Press, New York, NY, USA, pp. 223239.
  • 32
    Xia C, Higuchi K, Shimizu M, Matsushita T, Kogishi K, Wang J, Chiba T, Festing MF, Hosokawa M 1999 Genetic typing of the senescence-accelerated mouse (SAM) strains with microsatellite markers. Mamm Genome 10:235238.
  • 33
    Jamsa T, Jalovaara P, Peng Z, Vaananen HK, Tuukkanen J 1998 Comparison of three-point bending test and peripheral quantitative computed tomography analysis in the evaluation of the strength of mouse femur and tibia. Bone 23:155161.
  • 34
    Jilka RL, Weinstein RS, Takahashi K, Parfitt AM, Manolagas SC 1996 Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest 97:17321740.
  • 35
    Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC 1997 The effects of androgen deficiency on murine bone remodeling and bone mineral density are mediated via cells of the osteoblastic lineage. Endocrinology 138:40134021.
  • 36
    Klein RF, Mitchell SR, Phillips TJ, Belknap JK, Orwoll ES 1998 Quantitative trait loci affecting peak bone mineral density in mice. J Bone Miner Res 13:16481656.
  • 37
    Kawaguchi H, Manabe N, Miyaura C, Chikuda H, Nakamura K, Kuro-O M 1999 Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low-turnover osteopenia. J Clin Invest 104:229237.
  • 38
    Benes H, Weinstein RS, Zheng W, Thaden JJ, Jilka RL, Manolagas SC, Shmookler Reis RJ 2000 Chromosomal mapping of osteopenia-associated quantitative trait loci using closely related mouse strains. J Bone Miner Res 15:626633.
  • 39
    Breen SA, Loveday BE, Millest AJ, Waterton JC 1998 Stimulation and inhibition of bone formation: Use of peripheral quantitative computed tomography in the mouse in vivo. Lab Anim 32:467476.
  • 40
    Jamsa T, Koivukangas A, Ryhanen J, Jalovaara P, Tuukkanen J 1999 Femoral neck is a sensitive indicator of bone loss in immobilized hind limb of mouse. J Bone Miner Res 14:17081713.
  • 41
    Beamer WG, Shultz KL, Churchill GA, Frankel WN, Baylink DJ, Rosen CJ, Donahue LR 1999 Quantitative trait loci for bone density in C57BL/6J and CAST/EiJ inbred mice. Mamm Genome 10:10431049.
  • 42
    Centrella M, McCarthy TL, Canalis E 1991 Activin-A binding and biochemical effects in osteoblast-enriched cultures from fetal-rat parietal bone. Mol Cell Biol 11:250258.
  • 43
    Hashimoto M, Shoda A, Inoue S, Yamada R, Kondo T, Sakurai T, Ueno N, Muramatsu M 1992 Functional regulation of osteoblastic cells by the interaction of activin-A with follistatin. J Biol Chem 267:49995004.
  • 44
    Sakai R, Miwa K, Eto Y 1999 Local administration of activin promotes fracture healing in the rat fibula fracture model. Bone 25:191196.
  • 45
    Podolin PL, Denny P, Lord CJ, Hill NJ, Todd JA, Peterson LB, Wicker LS, Lyons PA 1997 Congenic mapping of the insulin-dependent diabetes (Idd) gene, Idd10, localizes two genes mediating the Idd10 effect and eliminates the candidate Fcgr1. J Immunol 159:18351843.
  • 46
    Podolin PL, Denny P, Armitage N, Lord CJ, Hill NJ, Levy ER, Peterson LB, Todd JA, Wicker LS, Lyons PA 1998 Localization of two insulin-dependent diabetes (Idd) genes to the Idd10 region on mouse chromosome 3. Mamm Genome 9:283286.
  • 47
    Serreze DV, Bridgett M, Chapman HD, Chen E, Richard SD, Leiter EH 1998 Subcongenic analysis of the Idd13 locus in NOD/Lt mice: Evidence for several susceptibility genes including a possible diabetogenic role for beta 2-microglobulin. J Immunol 160:14721478.
  • 48
    Brodnicki TC, McClive P, Couper S, Morahan G 2000 Localization of Idd11 using NOD congenic mouse strains: elimination of Slc9a1 as a candidate gene Immunogenetics 51:3741.
  • 49
    Hubner N, Lee YA, Lindpaintner K, Ganten D, Kreutz R 1999 Congenic substitution mapping excludes Sa as a candidate gene locus for a blood pressure quantitative trait locus on rat chromosome 1. Hypertension 34:643648.
  • 50
    St. Lezin E, Liu W, Wang JM, Yang Y, Qi N, Kren V, Zidek V, Kurtz TW, Pravenec M 2000 Genetic analysis of rat chromosome 1 and the Sa gene in spontaneous hypertension. Hypertension 35:225230.
  • 51
    Encinas JA, Wicker LS, Peterson LB, Mukasa A, Teuscher C, Sobel R, Weiner HL, Seidman CE, Seidman JG, Kuchroo VK 1999 QTL influencing autoimmune diabetes and encephalomyelitis map to a 0.15-cM region containing Il2. Nat Genet 21:158160.
  • 52
    Lyons PA, Armitage N, Argentina F, Denny P, Hill NJ, Lord CJ, Wilusz MB, Peterson LB, Wicker LS, Todd JA 2000 Congenic mapping of the type 1 diabetes locus, idd3, to a 780-kb region of mouse chromosome 3: Identification of a candidate segment of ancestral DNA by haplotype mapping. Genome Res 10:446453.
  • 53
    Aitman TJ, Glazier AM, Wallace CA, Cooper LD, Norsworthy PJ, Wahid FN, Al-Majali KM, Trembling PM, Mann CJ, Shoulders CC, Graf D, St. Lezin E, Kurtz TW, Kren V, Pravenec M, Ibrahimi A, Abumrad NA, Stanton LW, Scott J 1999 Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 21:7683.