• nuclear magnetic resonance microscopy;
  • cartilage;
  • growth plate;
  • mineral deposits


Quantitative nuclear magnetic resonance (NMR) microscopy was used to characterize the biochemical and morphological properties of the different zones within the growth plate of an embryonic chick femur. For precalcified tissue, water proton transverse relaxation times (T2) and magnetization transfer values (MT) were directly and inversely dependent, respectively, on tissue cellularity, defined as the intracellular area per unit area on histological sections. T2 values extrapolated for intra- and extracellular water were 96 ms and 46 ms, respectively. The extracellular T2 was comparable with that measured for mature cartilage. The MT values extrapolated for intra- and extracellular compartments were 0.32 and 0.85, respectively. These values were comparable with those values reported in the literature for cell pellets and for mature cartilage tissue. Thus, cellularity dominated the NMR properties of this immature cartilage tissue. Mineral deposits within calcified cartilage and periosteal bone invoked NMR relaxation processes that were dependent on the inorganic mineral phase. Additionally, collagen molecules present in mineralized zones gave rise to a significant MT effect. These results show the utility of water proton NMR microscopy for assessing both the organic and inorganic phases within mineralized tissues.