• 1
    Meyer GH 1867 Archief fur den anatomische und physiologischen Wissenschaften im Medizin. Die Architektur der Spongiosa 34:615628.
  • 2
    Culmann K 1866 Die Graphische Statik. Verlag von Meyer & Zeller, Zürich, Switzerland.
  • 3
    Wolff J 1892 Das gesetz der Transformation de Knochen. Hirschwald, Berlin, Germany.
  • 4
    Cowin SC 1997 The false premise of Wolff's law. Forma 12:247262.
  • 5
    Huiskes R 2000 If bone is the answer, then what is the question? J Anat 197:145156.
  • 6
    Hollister SJ, Brennan JM, Kikuchi N 1994 A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J Biomech 27:433444.
  • 7
    van Rietbergen B, Weinans H, Huiskes R, Odgaard A 1995 A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 28:6981.
  • 8
    van Rietbergen B, Weinans H, Polman BJW, Huiskes R 1996 Computational strategies for iterative solutions of large FEM applications employing voxel data. Int J Num Meth Eng 39:27432767.
  • 9
    Rho JY, Ashman RB, Turner CH 1993 Young's modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements. J Biomech 26:111119.
  • 10
    Turner CH, Rho J, Takano Y, Tsui TY, Pharr GM 1999 The elastic properties of trabecular and cortical bone tissues are similar: Results from two microscopic measurement techniques. J Biomech 32:437441.
  • 11
    Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN 2001 Hip contact forces and gait patterns from routine activities. J Biomech 34:859871.
  • 12
    van Rietbergen B, Eckstein F, Koller B, Huiskes R, Baaijens FPT, Rüegsegger P 1999 Feasibility of micro-FE analyses of human bones. In: MiddletonJ, JonesML, ShriveNG, PandeGN (eds.) Computer Methods in Biomechanics and Biomedical Engineering. Gordon and Breach Science Publishers, London, UK, pp. 5156.
  • 13
    Pistoia W, van Rietbergen B, Lochmuller EM, Lill CA, Eckstein F, Ruegsegger P 2002 Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30:842848.
  • 14
    van Rietbergen B, Muller R, Ulrich D, Ruegsegger P, Huiskes R 1999 Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. J Biomech 32:443451.
  • 15
    Bergmann G, Siraky J, Rohlmann A, Koelbel R 1984 A comparison of hip joint forces in sheep, dog and man. J Biomech 17:907921.
  • 16
    Homminga J, McCreadie BR, Ciarelli TE, Weinans H, Goldstein SA, Huiskes R 2002 Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone 30:759764.
  • 17
    Ding M 2000 Age variations in the properties of human tibial trabecular bone and cartilage. Acta Orthop Scand Suppl 292:145.
  • 18
    Guo XE, Goldstein SA 2000 Vertebral trabecular bone microscopic tissue elastic modulus and hardness do not change in ovariectomized rats. J Orthop Res 18:333336.
  • 19
    Guldberg RE, Hollister SJ, Charras GT 1998 The accuracy of digital image-based finite element models. J Biomech Eng 120:289295.
  • 20
    Ulrich D, van Rietbergen B, Weinans H, Ruegsegger P 1998 Finite element analysis of trabecular bone structure: A comparison of image-based meshing techniques. J Biomech 31:11871192.
  • 21
    Pistoia W, van Rietbergen B, Laib A, Ruegsegger P 2001 High-resolution three-dimensional-pQCT images can be an adequate basis for in-vivo microFE analysis of bone. J Biomech Eng 123:176183.
  • 22
    Niebur GL, Yuen JC, Hsia AC, Keaveny TM 1999 Convergence behavior of high-resolution finite element models of trabecular bone. J Biomech Eng 121:629635.
  • 23
    Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM 2000 High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech 33:15751583.