SEARCH

SEARCH BY CITATION

References

  • Ahern, G. P., P. R. Junankar, and A. F. Dulhunty. 1997. Subconductance states in single-channel activity of skeletal muscle ryanodine receptors after removal of FKBP12. Biophys. J. 72:146162.
  • Allen, D. G., N. P. Whitehead, and E. W. Yeung. 2005. Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J. Physiol. 567:723735.
  • Avila, G., E. H. Lee, C. F. Perez, P. D. Allen, and R. T. Dirksen. 2003. FKBP12 binding to RyR1 modulates excitation-contraction coupling in mouse skeletal myotubes. J. Biol. Chem. 278:2260022608.
  • Balnave, C. D., and D. G. Allen. 1995. Intracellular calcium and force in single mouse muscle fibres following repeated contractions with stretch. J. Physiol. 488:2536.
  • Bellinger, A. M., S. Reiken, M. Dura, P. W. Murphy, S. X. Deng, D. W. Landry, et al. 2008. Remodeling of ryanodine receptor complex causes “leaky” channels: a molecular mechanism for decreased exercise capacity. Proc. Natl. Acad. Sci. USA 105:21982202.
  • Brillantes, A. B., K. Ondrias, A. Scott, E. Kobrinsky, E. Ondriasova, M. C. Moschella, et al. 1994. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77:513523.
  • Chelu, M. G., C. I. Danila, C. P. Gilman, and S. L. Hamilton. 2004. Regulation of ryanodine receptors by FK506 binding proteins. Trends Cardiovasc. Med. 14:227234.
  • Clarkson, P. M., and M. J. Hubal. 2002. Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil. 81(Suppl):S52S69.
  • Corona, B. T., and C. P. Ingalls. 2013. Nitric oxide synthase inhibition increases immediate force loss after eccentric contractions. Muscle Nerve 47:271273.
  • Corona, B. T., C. Rouviere, S. L. Hamilton, and C. P. Ingalls. 2008a. Eccentric contractions do not induce rhabdomyolysis in malignant hyperthermia susceptible mice. J. Appl. Physiol. 105:15421553.
  • Corona, B. T., C. Rouviere, S. L. Hamilton, and C. P. Ingalls. 2008b. FKBP12 deficiency reduces strength deficits after eccentric contraction-induced muscle injury. J. Appl. Physiol. 105:527537.
  • Corona, B. T., E. M. Balog, J. A. Doyle, J. C. Rupp, R. C. Luke, and C. P. Ingalls. 2010. Junctophilin damage contributes to early strength deficits and EC coupling failure after eccentric contractions. Am. J. Physiol. Cell Physiol. 298:C365C376.
  • Gehlert, S., G. Bungartz, L. Willkomm, Y. Korkmaz, K. Pfannkuche, T. Schiffer, et al. 2012. Intense resistance exercise induces early and transient increases in ryanodine receptor 1 phosphorylation in human skeletal muscle. PLoS One 7:e49326.
  • Gilchrist, J. S. C., K. K. Wang, S. Katz, and A. N. Belcastro. 1992. Calcium activated neutral protease effects upon skeletal muscle sarcoplasmic reticulum protein structure and calcium release. J. Biol. Chem. 267:2085720865.
  • Golini, L., C. Chouabe, C. Berthier, V. Cusimano, M. Fornaio, R. Bonvallet, et al. 2011. Junctophilin 1 and 2 proteins interact with the L-type Ca2+ channel dihydropyridine receptors (DHPRs) in skeletal muscle. J. Biol. Chem. 286:4371743725.
  • Herrmann-Frank, A., H.-G. Lüttgau, and D. G. Stephenson. 1999. Caffeine and excitation-contraction coupling in skeletal muscle: a stimulating story. J. Muscle Res. Cell. Motil. 20:223237.
  • Hirata, Y., M. Brotto, N. Weisleder, Y. Chu, P. Lin, X. Zhao, et al. 2006. Uncoupling store-operated Ca2+ entry and altered Ca2+ release from sarcoplasmic reticulum through silencing of junctophilin genes. Biophys. J. 90:44184427.
  • Hyldahl, R. D., and M. J. Hubal. 2013. Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise. Muscle Nerve 49:155170.
  • Ingalls, C. P., G. L. Warren, and R. B. Armstrong. 1998a. Dissociation of force production from MHC and actin contents in muscles injured by eccentric contractions. J. Muscle Res. Cell Motil. 19:215224.
  • Ingalls, C. P., G. L. Warren, J. H. Williams, C. W. Ward, and R. B. Armstrong. 1998b. E-C coupling failure in mouse EDL muscle after in vivo eccentric contractions. J. Appl. Physiol. 85:5867.
  • Ingalls, C. P., G. L. Warren, J. Z. Zhang, S. L. Hamilton, and R. B. Armstrong. 2004. Dihydropyridine and ryanodine receptor binding after eccentric contractions in mouse skeletal muscle. J. Appl. Physiol. 96:16191625.
  • Ito, K., S. Komazaki, K. Sasamoto, M. Yoshida, M. Nishi, K. Kitamura, et al. 2001. Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1. J. Cell Biol. 154:10591067.
  • Komazaki, S., K. Ito, H. Takeshima, and H. Nakamura. 2002. Deficiency of triad formation in developing skeletal muscle cells lacking junctophilin type 1. FEBS Lett. 524:225229.
  • Kushnir, A., M. J. Betzenhauser, and A. R. Marks. 2010. Ryanodine receptor studies using genetically engineered mice. FEBS Lett. 584:19561965.
  • Lamb, G. D., M. A. Cellini, and D. G. Stephenson. 2001. Different Ca2+ releasing action of caffeine and depolarisation in skeletal muscle fibres of the rat. J. Physiol. 531:715728.
  • Lanner, J. T., D. K. Georgiou, A. D. Joshi, and S. L. Hamilton. 2010. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb. Perspect. Biol. 2:a003996.
  • Lowe, D. A., G. L. Warren, D. A. Hayes, M. A. Farmer, and R. B. Armstrong. 1994. Eccentric contraction-induced injury of mouse soleus muscle: effect of varying [Ca2+]o. J. Appl. Physiol. 76:14451453.
  • Lowe, D. A., G. L. Warren, C. P. Ingalls, D. B. Boorstein, and R. B. Armstrong. 1995. Muscle function and protein metabolism after initiation of eccentric contraction-induced injury. J. Appl. Physiol. 79:12601270.
  • Lynch, G. S., C. J. Fary, and D. A. Williams. 1997. Quantitative measurement of resting skeletal muscle [Ca2+]i following acute and long-term downhill running exercise in mice. Cell Calcium 22:373383.
  • Murphy, R. M., T. L. Dutka, D. Horvath, J. R. Bell, L. M. Delbridge, and G. D. Lamb. 2013. Ca2+-dependent proteolysis of junctophilin-1 and junctophilin-2 in skeletal and cardiac muscle. J. Physiol. 591:719729.
  • Rathbone, C. R., J. C. Wenke, G. L. Warren, and R. B. Armstrong. 2003. Importance of satellite cells in the strength recovery after eccentric contraction-induced muscle injury. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285:R1490R1495.
  • Rijkelijkhuizen, J. M., C. J. de Ruiter, P. A. Huijing, and A. de Haan. 2005. Low-frequency fatigue, post-tetanic potentiation and their interaction at different muscle lengths following eccentric exercise. J. Exp. Biol. 208:5563.
  • Shevchenko, S., W. Feng, M. Varsanyi, and V. Shoshan-Barmatz. 1998. Identification, characterization and partial purification of a thiol-protease which cleaves specifically the skeletal muscle ryanodine receptor/Ca2+ release channel. J. Membr. Biol. 161:3343.
  • Takekura, H., N. Fujinami, T. Nishizawa, H. Ogasawara, and N. Kasuga. 2001. Eccentric exercise-induced morphological changes in the membrane systems involved in excitation-contraction coupling in rat skeletal muscle. J. Physiol. 533:571583.
  • Tang, W., C. P. Ingalls, W. J. Durham, J. Snider, M. B. Reid, G. Wu, et al. 2004. Altered excitation-contraction coupling with skeletal muscle specific FKBP12 deficiency. FASEB J. 18:15971599.
  • Warren, G. L., D. A. Lowe, D. A. Hayes, C. J. Karwoski, B. M. Prior, and R. B. Armstrong. 1993. Excitation failure in eccentric contraction-induced injury of mouse soleus muscle. J. Physiol. 468:487499.
  • Warren, G. L., D. A. Hayes, D. A. Lowe, J. H. Williams, and R. B. Armstrong. 1994. Eccentric contraction-induced injury in normal and hindlimb-suspended mouse soleus and EDL muscles. J. Appl. Physiol. 77:14211430.
  • Warren, G. L., D. A. Lowe, D. A. Hayes, M. A. Farmer, and R. B. Armstrong. 1995. Redistribution of cell membrane probes following contraction-induced injury of mouse soleus muscle. Cell Tissue Res. 282:311320.
  • Warren, G. L., C. P. Ingalls, S. Shaw, and R. B. Armstrong. 1999. Uncoupling of in vivo torque production from EMG in muscles injured by eccentric contractions. J. Physiol. 515:609619.
  • Warren, G. L., C. P. Ingalls, and R. B. Armstrong. 2002a. Temperature dependency of force loss and Ca2+ homeostasis in mouse EDL muscle after eccentric contractions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282:R1122R1132.
  • Warren, G. L., C. P. Ingalls, D. A. Lowe, and R. B. Armstrong. 2002b. What mechanisms contribute to the strength loss that occurs during and in the recovery from skeletal muscle injury? J. Orthop. Sports Phys. Ther. 32:5864.
  • Wu, Y., B. Aghdasi, S. J. Dou, J. Z. Zhang, S. Q. Liu, and S. L. Hamilton. 1997. Functional interactions between cytoplasmic domains of the skeletal muscle Ca2+ release channel. J. Biol. Chem. 272:2505125061.
  • Yeung, E. W., C. D. Balnave, H. J. Ballard, J. P. Bourreau, and D. G. Allen. 2002. Development of T-tubular vacuoles in eccentrically damaged mouse muscle fibres. J. Physiol. 540:581592.