Get access

Temperature Stress Tolerance of Conifer Seedlings after Exposure to UV-B Radiation


  • Sylvia J. L'Hirondelle,

    Corresponding author
    1. B.C. Ministry of Forests Research Branch, Victoria, Canada
    • To whom correspondence should be addressed: Mailing address: Research Branch Lab, PO Box 9536 Stn Prov Govt, Victoria, BC, Canada V8W 9C4; Street address: Research Branch Lab, 4300 North Road, Victoria, BC, Canada V8Z 5J3. Fax: 250-952-4119; e-mail:

    Search for more papers by this author
  • Wolfgang D. Binder

    1. B.C. Ministry of Forests Research Branch, Victoria, Canada
    Search for more papers by this author


Ground-level UV-B radiation has increased globally due to a thinning stratospheric ozone layer. We estimated the effects of increased UV-B on 10 conifer species grown in chambers in greenhouses with supplemental UV-B. Species were selected from a wide range of geographic locations. Plant material of two ages (germinants, first growing season; seedlings, second season) were exposed to three levels of UV-B from ambient (at Victoria, B.C., Canada) to three times ambient (12 kJ m−2 d−1) for up to four months. Frost hardiness and heat tolerance of shoots were estimated from changes in chlorophyll fluorescence after exposure to test temperatures. There were no significant differences among seed sources from different elevations in their response to temperature stresses. When UV-B increased above the ambient level, three species (interior Douglas-fir, Engelmann spruce, and interior lodgepole pine) increased in frost hardiness and four (grand fir, interior spruce, yellow-cedar, and western redcedar) decreased. Two species (western redcedar and western hemlock) increased in heat tolerance when UV-B increased to the 12 kJ level. The main differences in stress tolerance were between the triple ambient and the other two treatments, not between ambient and double ambient, suggesting that any changes in UV-B would have to be large to elicit physiological changes in conifer seedlings.