• 1
    Lerman, L. S. (1961) Structural considerations in the interaction of deoxyribonucleic acid and acridines. J. Mol. Biol. 3, 1830.
  • 2
    Lerman, L. S. (1963) The structure of the deoxyribonucleic acid (DNA)-acridines complex. Proc. Natl. Acad. Sci. U.S.A 49, 94102.
  • 3
    Hurley, L. H. (2002) DNA and its associated processes as targets for cancer therapy. Nat. Rev. Cancer 2, 188200.
  • 4
    Graves, D. E. and L. M. Velea (2000) Intercalative binding of small molecules to nucleic acids. Curr. Org. Chem. 4, 915929.
  • 5
    Brana, F. M., M. Cacho, A. Gradillas, B. Pascual-Teresa and A. Ramos (2001) Intercalators as anticancer drugs. Curr. Pharm. Des. 7, 17451780.
  • 6
    Haq I. and J. Ladbury (2000) Drug-DNA recognition: energetics and implications for design. J. Mol. Recognit. 13, 188197.
  • 7
    Thurston, D. E. (1999) Nucleic acid targeting: therapeutic strategies for the 21st century. Br. J. Cancer 80, 6585.
  • 8
    Dervan P. B., A. T. Poulin-Kerstien, E. J. Fechter and B. S. Edelson (2005) Regulation of gene expression by synthetic DNA-binding ligands. Top. Curr. Chem. 253, 132.
  • 9
    Wilson W. D. (1996) Reversible interactions of nucleic acids with small molecules. In Nucleic Acids in Chemistry and Biology (Edited by G. M. Blackburn and M. J. Gait), pp. 329374. IRL Press, Oxford , UK .
  • 10
    Geierstanger, B. H. and D. E. Wemmer (1995) Complexes of the minor-groove of DNA. Annu. Rev. Biophys. Biomol. Struct. 24, 463493.
  • 11
    Demeunynck, M., C. Bailly and W. D. Wilson (2002) DNA and RNA Binders. Wiley-VCH, Weinheim .
  • 12
    Armstrong R. W., T. Kurucsev and U. P. Strauss (1970) Interaction between acridine dyes and deoxyribonucleic acid. J. Am. Chem. Soc. 92, 31743181.
  • 13
    Tuite E. and B. Nordén (1994) Sequence specific interactions of methylene blue with polynucleotides and DNA: A spectroscopic study. J. Am. Chem. Soc. 116, 75487556.
  • 14
    LePecq J.-B. and C. Paoletti (1967) A fluorescent complex between ethidium bromide and nucleic acids–physical-chemical characterization. J. Mol. Biol. 27, 87106.
  • 15
    Netzel T. L., K. Nafisi, M. Zhao, J. R. Lenhard and I. Johnson (1995) Base-content dependence of emission enhancements, quantum yield, and lifetimes for cyanine dyes bound to double-strand DNA: Photophysical properties of monomeric and bichromophoric DNA stains. J. Phys. Chem. 99, 1793617947.
  • 16
    Rye H. S., S. Yue, D. E. Wemmer, M. A. Quaesada, R. P. Haugland, R. A. Mathies and A. N. Glazer (1992) Base-content dependence of emission enhancements, quantum yields, and lifetimes for cyanine dyes bound to double-strand DNA: photophysical properties of monomeric and bichromomphoric DNA stains. Nucleic Acids Res. 20, 28032812.
  • 17
    Hannah, K. C. and B. A. Armitage (2004) DNA-templated assembly of helical cyanine dye aggregates: a supramolecular chain polymerization. Acc. Chem. Res. 37, 845853.
  • 18
    Cantor, C. R. and P. R. Schimmel (1980) Biophysical Chemistry, Part II, pp. 392463. W. H. Freeman and Co., San Francisco .
  • 19
    Nordén B., M. Kubista and T. Kurucsev (1992) Linear dichroism spectroscopy of nucleic acid. Q. Rev. Biophys. 25, 51171.
  • 20
    Suh, D. and J. B. Chaires (1995) Criteria for the mode of binding of DNA binding agents. Biorg. Med. Chem. 3, 723728.
  • 21
    Medhi, C., J. B. O. Mitchell, S. L. Price and A. B. Tabor (1999) Electrostatic factors in DNA intercalation. Biopolymers 52, 8493.
  • 22
    Ihmels, H. (2004) Quinolizinium salts and benzo analogues. In Science of Synthesis, Volume 15: Six-Membered Hetarenes with One Nitrogen or Phosphorus Atom, (Edited by D. Black), pp. 907946. Georg Thieme Verlag, Stuttgart .
  • 23
    Philips, S. D. and R. N. Castle (1988) A review of the chemistry of the antitumor benzo[c]phenantridine alkaloids nitidine and fagaronine and of the related antitumor alkaloid coralyne. J. Heterocyclic Chem. 18, 223232.
  • 24
    Gupta, R. S., W. Murray and R. Gupta (1988) Cross resistance pattern toward anticancer drugs of a human carcinoma multidrug-resistant cell-line. Br. J. Cancer 58, 441447.
  • 25
    Gatto, M., M. M. Sanders, C. Yu, H. Y. Yu, D. Makhey, E. J. LaVoie and L. F. Liu (1996) Identification of topoisomerase I as the cytotoxic target of the protoberberine alkaloid coralyne. Cancer Res. 56, 27952800.
  • 26
    Zee-Cheng, K. Y. and C. C. Cheng (1973) Interaction between DNA and coralyne acetosulfate, an antileukemic compound. J. Pharm. Sci. 62, 15721573.
  • 27
    Wilson, W. D., A. N. Gough, J. J. Doyle and M. W. Davidson (1976) Coralyne. intercalation with DNA as a possible mechanism of antileucemic action. J. Med. Chem. 19, 12611263.
  • 28
    Gough, A. N., R. L. Jones and W. D. Wilson (1979) Dimerization of coralyne and its propyl analog and their association with DNA. J. Med. Chem. 22, 15511554.
  • 29
    Pal, S., G. S. Kumar, D. Debnath and M. Maiti (1998) Interaction of the antitumor alkaloid coralyne with dublex deoxyribonucleic acid structures: spectroscopic and viscosimetric studies. Ind. J. Biochem. Biophys. 35, 321332.
  • 30
    Keppler, M., S. Neidle and K. R. Fox (2001) Stabilization of TG- and AG-containing antiparallel DNA triplexes by triplex-binding ligands. Nucleic Acids Res. 29, 19351942.
  • 31
    Lee, J. S., L. J. P. Latimer and K. J. Hampel (1993) Coralyne binds tightly to both T·A·T- and C·G·C+-containing DNA triplexes. Biochemistry 32, 55915597.
  • 32
    Moraru-Allen, A. A., S. Cassidy, J.-L. Asensio Avarez, K. R. Fox, T. Brown and A. N. Lane (1997) Coralyne has a preference for intercalation between TA·T triples in intramolecular DNA triple helices. Nucleic Acids Res. 25, 18901896.
  • 33
    Polak, M. and N. V. Hud (2002) Complete disproportionation of duplex poly(dT)·poly(dA) into triplex poly(dT)·poly(dA)·poly(dT) and poly(dA) by coralyne. Nucleic Acids Res. 30, 983992.
  • 34
    Jain, S. S., M. Polak and N. V. Hud (2003) Controlling nucleic acid secondary structure by intercalation: effects of DNA strand length on coralyne-driven duplex disproportionation. Nucleic Acids Res. 31, 46084615.
  • 35
    Persil, Ö., C. T. Santai, S. S. Jain and N. V. Hud (2004) Assembly of an antiparallel homo-adenine DNA duplex by small-molecule binding. J Am. Chem. Soc. 126, 86448645.
  • 36
    Albergo, D. D. and D. H. Turner (1981) Solvent effects on the thermodynamics of double-helix formation in (dG-dC)3. Biochemistry 20, 14131418.
  • 37
    Chen A. Y. and L. F. Liu (1994) DNA topoisomerases—essential enzymes and lethal targets. Annu. Rev. Pharmacol. 34, 191218.
  • 38
    Wang J. C. (1996) DNA topoisomerases. Annu. Rev. Biochem. 65, 635692.
  • 39
    Wang, L.-K., B. D. Rogers and S. M. Hecht (1996) Inhibition of topoisomerase I function by coralyne and 5,6-dihydrocoralyne. Chem. Res. Toxicol. 9, 7583.
  • 40
    Hsiang, Y.-H. and L. F. Liu (1988) Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res. 48, 17221726.
  • 41
    Pilch, D. S., C. Yu, D. Makhey, E. J. LaVoie, A. R. Srinivasan, W. K. Olson, R. S. Sauers, K. J. Breslauer, N. E. Geacintov and L. F. Liu (1997) Minor groove-directed and intercalative ligand-DNA interactions in the poisoning of human DNA topoisomerase I by protoberberine analogs. Biochemistry 36, 1254212553.
  • 42
    Yu, Y., C.-Y. Long, S.-Q. Sun and J.-P. Liu (2001) Application of an alkaloid as a novel fluorescence probe in the determination of DNA. Anal. Lett. 34, 26592669.
  • 43
    Makhey, D., B. Gatto, C. Yu, A. Liu, L. F. Liu and E. J. LaVoie (1996) Coralyne and related compounds as mammalian topoisomerase I and topoisomerase II poisons. Bioorg. Med. Chem. 4, 781791.
  • 44
    Caprasse, M. and C. Houssier (1984) Physico-chemical investigation of the mode of binding of the alkaloids 5,6-dihydroflavopereirine and sempervirine. Biochimie 66, 3141.
  • 45
    Martin, M. A., B. Del Castillo and D. A. Lerner (1988) Study of the luminescence properties of a new series of quinolizinium salts and their interaction with DNA. Anal. Chim. Acta 205, 105115.
  • 46
    Ihmels, H., K. Faulhaber, B. Engels and C. Lennartz (2000) New dyes based on amino-substituted acridizinium salts—synthesis and exceptional photochemical properties. Chem. Eur. J. 6, 28542864.
  • 47
    Ihmels, H., K. Faulhaber, K. Wissel, G. Bringmann, K. Messer, G. Viola and D. Vedaldi (2001) Synthesis and investigation of the DNA-binding and DNA-photodamaging properties of indolo-[2,3-b]-quinolizinium bromide. Eur. J. Org. Chem., 2005 11571161.
  • 48
    Ihmels, H., K. Faulhaber, C. Sturm, G. Bringmann, K. Messer, N. Gabellini, D. Vedaldi and G. Viola (2001) Acridizinium salts as a novel class of DNA-binding and site-selective DNA-photodamaging chromophores. Photochem. Photobiol. 74, 505511.
  • 49
    Viola, G., F. Dall'Acqua, N. Gabellini, S. Moro, D. Vedaldi and H. Ihmels (2002) Indolo[2,3-b]-quinolizinium bromide: an efficient intercalator with DNA-photodamaging properties. Chem. BioChem. 3, 550558.
  • 50
    Viola, G., M. Bressanini, N. Gabellini, D. Vedaldi, F. Dall'Acqua and H. Ihmels (2002) Naphthoquinolizinium derivatives as novel platform for DNA-binding and DNA-photodamaging chromophores. Photochem. Photobiol. Sci. 1, 882889.
  • 51
    Ihmels, H., K. Faulhaber, K. Wissel, G. Viola and D. Vedaldi (2003) 6-Aminoacridizinium bromide: a fluorescence probe which lights up in AT-rich regions of DNA. Org. Biomol. Chem. 1, 29993001.
  • 52
    Viola, G., H. Ihmels, H. Kraußer, D. Vedaldi and F. Dall'Acqua (2004) DNA-binding and DNA-photocleavaging properties of 12a,14a-diazoniapentaphene. ARKIVOC 5, 219230.
  • 53
    Faulhaber K. (2003) Untersuchunger der Wechselwirkungen von anellierten Chinoliziniumsalzen mit DNA. Dissertation, University of Würzburg, Germany. Available at: Accessed on 23 May 2005.
  • 54
    Bohne, C., K. Faulhaber, B. Giese, A. Häfner, A. Hofmann, H. Ihmels, A.-K. Köhler, S. Perä, F. Schneider and M. A. L. Sheepwash (2005) Studies on the mechanism of the photoinduced DNA damage in the presence of acridizinium salts—involvement of singlet oxygen and an unusual source for hydroxyl radicals. J. Am. Chem. Soc. 126, 7685.
  • 55
    Rebek J. (1990) Molecular recognition with model system. Angew. Chem., Int. Ed. Engl. 29, 245255.
  • 56
    Nordén, B. and T. Kurucsev (1994) Analysing DNA complexes by circular and linear dichroism. J. Mol. Recognit. 7, 141156.
  • 57
    Saraf, S.-U.-D. (1981) Absorption spectra of benzologs of quinolizinium ions. Heterocycles 16, 9871007.
  • 58
    Molina, A., J. J. Vaquero, J. L. Garcia Navio, J. Alvarez-Builla, M. M. Rodrigo, O. Castano and J. L. J. Andres (1996) Azonia derivatives of the γ-carboline system, a new class of DNA intercalators. Bioorg. Med. Chem. Lett. 13, 14531456.
  • 59
    Molina, A., J. J. Vaquero, J. L. Garcia Navio, J. Alvarez-Builla, B. Pascual-Teresa, F. Gago and M. M. Rodrigo (1999) Novel DNA intercalators based on the pyrazino[1′,6′:1,2]pyrido[4,3-b]indol-5-inium system. J. Org. Chem. 64, 39073915.
  • 60
    Martin, M. A., A. S. Bouin, S. Muñez-Botella and B. del Castillo (2002) A study of the interaction of polycyclic derivatives of azaquinolizinium salts with DNA. Polycyclic Aromatic Compounds 22, 3753.
  • 61
    Martinez, V., C. Burgos, J. Alvarez-Builla, G. Fernandez, A. Domingo, R. Garcia-Nieto, F. Gago, I. Manzanares, C. Cuevas and J. J. Vaquero, (2004) Benzo[f]azino[2,1-a]phthalazinium cations: novel DNA intercalating chromophores with antiproliferativeactivity J. Med. Chem. 47, 11361148.