Advertisement

Quenching Platinum Octaethylporphine Phosphorescence in Solution by Poly(ferrocenylsilane)

Authors


  • This paper is part of a special issue dedicated to Professor J. C. (Tito) Scaiano on the occasion of his 60th birthday.

ABSTRACT

We describe experiments that determine the quenching kinetics by poly(ferrocenylsilane) (PFS) for platinum octaethylporphine (PtOEP) phosphorescence in toluene solution. The phosphorescence quenching process was interpreted in terms of diffusion-controlled kinetics. Pulsed-gradient spinecho nuclear magnetic resonance (PGSE NMR) and dynamic light scattering (DLS) were used to characterize the diffusion behavior of PFS and PtOEP in toluene solution. We found that the ferrocene group present in the repeat unit of polymer backbone is a good quencher for PtOEP phosphorescence. Quenching by the polymer involves the entire PFS polymer chain instead of individual ferrocene groups. The intrinsic quenching ability of PFS was found to be higher than that of a model compound, Bu-FS, that contains a single ferrocene group.

Ancillary