SEARCH

SEARCH BY CITATION

ABSTRACT

The calibration of the erythemal irradiance measured by a Yankee Environmental System (YES) UVB-1 biometer is presented using two methods of calibration with a wide range of experimental solar zenith angles (SZAs) and ozone values. The calibration is performed through simultaneous spectral measurements by a calibrated double-monochromator Brewer MK-III spectrophotometer at “El Arenosillo” station, located in southwestern Spain. Because the range of spectral measurements of the Brewer spectrophotometer is 290–363 nm, a previously validated radiative transfer model was used to account for the erythemal contribution between 363 and 400 nm. Both methods are recommended by the World Meteorological Organization and we present and discuss here a wide range of results and features given by modified procedures applied to these two general methods. As is well established, the calibration factor for this type of radiometric system is dependent on atmospheric conditions, the most important of which are the ozone content and the SZA. Although the first method is insensitive to these two factors, we analyze this behavior in terms of the range used for the SZA and the use of two different mathematical approaches for its determination. The second method shows the dependence on SZA and ozone content and, thus, a polynomial as a function of SZA or a matrix including SZA and ozone content were determined as general calibration factors for the UV radiometric system. We must note that the angular responses of the YES radiometer and Brewer spectroradiometer have not been considered, because of the dificulty in correcting them. The results show in detail the advantages and drawbacks (and the corresponding associated error) given by the different approaches used for the determination of these calibration coefficients.