• 1
    Gehring, W. J. and K. Ikeo (1999) Pax 6: Mastering eye morphogenesis and eye evolution. Trends Genet. 15, 371377.
  • 2
    Kojima, D. and Y. Fukada (1999) Non-visual photoreception by a variety of vertebrate opsins. Novartis Found Symp. 224, 265282.
  • 3
    Oksche, A. (1965) Survey of the development and comparative morphology of the pineal organ. Prog. Brain Res. 10, 329.
  • 4
    Falcón, J. (1999) Cellular circadian clocks in the pineal. Prog. Neurobiol. 58, 121162.
  • 5
    Klein, D. C. (2004) The 2004 Aschoff/Pittendrigh lecture: Theory of the origin of the pineal gland–a tale of conflict and resolution. J. Biol. Rhythms 19, 264279.
  • 6
    Nakahara, K., N. Murakami, T. Nasu, H. Kuroda and T. Murakami (1997) Individual pineal cells in chick possess photoreceptive, circadian clock and melatonin-synthesizing capacities in vitro. Brain Res. 774, 242245.
  • 7
    Natesan, A., L. Geetha and M. Zatz (2002) Rhythm and soul in the avian pineal. Cell Tissue Res. 309, 3545.
  • 8
    Okano, T. and Y. Fukada (2003) Chicktacking pineal clock. J. Biochem. 134, 791797.
  • 9
    Ekström, P. and H. Meissl (2003) Evolution of photosensory pineal organs in new light: The fate of neuroendocrine photoreceptors. Phil. Trans. R. Soc. Lond. B 358, 16791700.
  • 10
    Masai, I., C.-P. Heisenberg, K. A. Barth, R. Macdonald, S. Adamek and S. W. Wilson (1997) floating head and masterblind regulate neuronal patterning in the roof of the forebrain. Neuron 18, 4357.
  • 11
    Ekström, P. and H. Meissl (1997) The pineal organ of teleost fishes. Rev. Fish Biol. Fish. 7, 199284.
  • 12
    Okano, T., K. Yamazaki, T. Kasahara and Y. Fukada (1997) Molecular cloning of heterotrimeric G-protein α-subunits in chicken pineal gland. J. Mol. Evol. 44, S91S97.
  • 13
    Kasahara, T., T. Okano, T. Yoshikawa, K. Yamazaki and Y. Fukada (2000) Rod-type transducin α-subunit mediates a phototransduction pathway in the chicken pineal gland. J. Neurochem. 75, 217224.
  • 14
    Shen, Y.-C. and P. A. Raymond (2004) Zebrafish cone-rod (crx) homeobox gene promotes retinogenesis. Dev. Biol. 269, 237251.
  • 15
    Morin, F., C. Lugnier, J. Kameni and P. Voisin (2001) Expression and role of phosphodiesterase 6 in the chicken pineal gland. J. Neurochem. 78, 8899.
  • 16
    Decressac, S., A. Grechez-Cassiau, J. Lenfant, J. Falcón and P. Bois (2002) Cloning, localization and functional properties of a cGMP-gated channel in photoreceptor cells from fish pineal gland. J. Pineal Res. 33, 225233.
  • 17
    Gamse, J. T., Y.-C. Shen, C. Thisse, B. Thisse, P. A. Raymond, M. E. Halpern and J. O. Liang (2002) Otx5 regulates genes that show circadian expression in the zebrafish pineal complex. Nat. Genet. 30, 117121.
  • 18
    Meissl, H. (1997) Photic regulation of pineal function. Analogies between retinal and pineal photoreception. Biol. Cell 89, 549554.
  • 19
    Blackshaw, S. and S. H. Snyder (1997) Developmental expression pattern of phototransduction components in mammalian pineal implies a light-sensing function. J. Neurosci. 17, 80748082.
  • 20
    Okano, T., T. Yoshizawa and Y. Fukada (1994) Pinopsin is a chicken pineal photoreceptive molecule. Nature 372, 9497.
  • 21
    Max, M., P. J. McKinnon, K. J. Seidenman, R. K. Barrett, M. L. Applebury, J. S. Takahashi and R. F. Margolskee (1995) Pineal opsin: A nonvisual opsin expressed in chick pineal. Science 267, 15021506.
  • 22
    Nakamura, A., D. Kojima, H. Imai, A. Terakita, T. Okano, Y. Shichida and Y. Fukada (1999) Chimeric nature of pinopsin between rod and cone visual pigments. Biochemistry 38, 1473814745.
  • 23
    Kasahara, T., T. Okano, T. Haga and Y. Fukada (2002) Opsin-G11-mediated signaling pathway for photic entrainment of the chicken pineal circadian clock. J. Neurosci. 22, 73217325.
  • 24
    Okano, T., Y. Takanaka, A. Nakamura, K. Hirunagi, A. Adachi, S. Ebihara and Y. Fukada (1997) Immunocytochemical identification of pinopsin in pineal glands of chicken and pigeon. Brain Res. Mol. Brain Res. 50, 190196.
  • 25
    Vigh, B., P. Röhlich, T. Görcs, M. J. Manzano e Silva, Á. Szél, Z. Fejér and I. Vigh-Teichmann (1998) The pineal organ as a folded retina: Immunocytochemical localization of opsins. Biol. Cell 90, 653659.
  • 26
    Kawamura, S. and S. Yokoyama (1997) Expression of visual and nonvisual opsins in American chameleon. Vision Res. 37, 18671871.
  • 27
    Mano, H., D. Kojima and Y. Fukada (1999) Exo-rhodopsin: A novel rhodopsin expressed in the zebrafish pineal gland. Brain Res. Mol. Brain Res. 73, 110118.
  • 28
    Philp, A. R., J. Bellingham, J.-M. Garcia-Fernandez and R. G. Foster (2000) A novel rod-like opsin isolated from the extra-retinal photoreceptors of teleost fish. FEBS Lett. 468, 181188.
  • 29
    Vigh-Teichmann, I., H.-W. Korf, A. Oksche and B. Vigh (1982) Opsin-immunoreactive outer segments and acetylcholinesterase-positive neurons in the pineal complex of Phoxinus phoxinus (Teleostei, Cyprinidae). Cell Tissue Res. 227, 351369.
  • 30
    Vigh-Teichmann, I., H.-W. Korf, F. Nürnberger, A. Oksche, B. Vigh and R. Olsson (1983) Opsin-immunoreactive outer segments in the pineal and parapineal organs of the lamprey (Lampetra fluviatilis), the eel (Anguilla anguilla), and the rainbow trout (Salmo gairdneri). Cell Tissue Res. 230, 289307.
  • 31
    Robinson, J., E. A. Schmitt and J. E. Dowling (1995) Temporal and spatial patterns of opsin gene expression in zebrafish (Danio rerio). Vis. Neurosci. 12, 895906.
  • 32
    Forsell, J., P. Ekström, I. N. Flamarique and B. Holmqvist (2001) Expression of pineal ultraviolet- and green-like opsins in the pineal organ and retina of teleosts. J. Exp. Biol. 204, 25172525.
  • 33
    Tamotsu, S., T. Oishi, K. Nakao, Y. Fukada, Y. Shichida, T. Yoshizawa and Y. Morita (1994) Localization of iodopsin and rod-opsin immunoreactivity in the retina and pineal complex of the river lamprey, Lampetra japonica. Cell Tissue Res. 278, 110.
  • 34
    Masuda, H., T. Oishi, M. Ohtani, M. Michinomae, Y. Fukada, Y. Shichida and T. Yoshizawa (1994) Visual pigments in the pineal complex of the Japanese quail, Japanese grass lizard and bullfrog: Immunocytochemistry and HPLC analysis. Tissue Cell 26, 101113.
  • 35
    Koyanagi, M., E. Kawano, Y. Kinugawa, T. Oishi, Y. Shichida, S. Tamotsu and A. Terakita (2004) Bistable UV pigment in the lamprey pineal. Proc. Natl. Acad. Sci. USA 101, 66876691.
  • 36
    Chaurasia, S. S., M. D. Rollag, G. Jiang, W. P. Hayes, R. Haque, A. Natesan, M. Zatz, G. Tosini, C. Liu, H.-W. Korf, P. M. Iuvone and I. Provencio (2005) Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): Differential regulation of expression in pineal and retinal cell types. J. Neurochem. 92, 158170.
  • 37
    Bailey, M. J. and V. M. Cassone (2005) Melanopsin expression in the chick retina and pineal gland. Brain Res. Mol. Brain Res. 134, 345348.
  • 38
    Furukawa, T., E. M. Morrow and C. L. Cepko (1997) Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91, 531541.
  • 39
    Chen, S., Q.-L. Wang, Z. Nie, H. Sun, G. Lennon, N. G. Copeland, D. J. Gilbert, N. A. Jenkins and D. J. Zack (1997) Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19, 10171030.
  • 40
    Furukawa, T., E. M. Morrow, T. Li, F. C. Davis and C. L. Cepko (1999) Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat. Genet. 23, 466470.
  • 41
    Li, X., S. Chen, Q. Wang, D. J. Zack, S. H. Snyder and J. Borjigin (1998) A pineal regulatory element (PIRE) mediates transactivation by the pineal/retina-specific transcription factor CRX. Proc. Natl. Acad. Sci. USA 95, 18761881.
  • 42
    Asaoka, Y., H. Mano, D. Kojima and Y. Fukada (2002) Pineal expression-promoting element (PIPE), a cis-acting element, directs pineal-specific gene expression in zebrafish. Proc. Natl. Acad. Sci. USA 99, 1545615461.
  • 43
    Gothilf, Y., S. L. Coon, R. Toyama, A. Chitnis, M. A. A. Namboodiri and D. C. Klein (1999) Zebrafish serotonin N-acetyltransferase-2: marker for development of pineal photoreceptors and circadian clock function. Endocrinology 140, 48954903.
  • 44
    Gothilf, Y., R. Toyama, S. L. Coon, S.-J. Du, I. B. Dawid and D. C. Klein (2002) Pineal-specific expression of green fluorescent protein under the control of the serotonin-N-acetyltransferase gene regulatory regions in transgenic zebrafish. Dev. Dyn. 225, 241249.
  • 45
    Appelbaum, L., R. Toyama, I. B. Dawid, D. C. Klein, R. Baler and Y. Gothilf (2004) Zebrafish serotonin-N-acetyltransferase-2 gene regulation: Pineal-restrictive downstream module contains a functional E-box and three photoreceptor conserved elements. Mol. Endocrinol. 18, 12101221.
  • 46
    Appelbaum, L., A. Anzulovich, R. Baler and Y. Gothilf (2005) Homeobox-clock protein interaction in zebrafish. A shared mechanism for pineal-specific and circadian gene expression. J. Biol. Chem. 280, 1154411551.
  • 47
    Takanaka, Y., T. Okano, M. Iigo and Y. Fukada (1998) Light-dependent expression of pinopsin gene in chicken pineal gland. J. Neurochem. 70, 908913.
  • 48
    Takanaka, Y., T. Okano, K. Yamamoto and Y. Fukada (2002) A negative regulatory element required for light-dependent pinopsin gene expression. J. Neurosci. 22, 43574363.
  • 49
    Talbot, W. S., B. Trevarrow, M. E. Halpern, A. E. Melby, G. Farr, J. H. Postlethwait, T. Jowett, C. B. Kimmel and D. Kimelman (1995) A homeobox gene essential for zebrafish notochord development. Nature 378, 150157.
  • 50
    Heisenberg, C.-P., C. Houart, M. Take-uchi, G.-J. Rauch, N. Young, P. Coutinho, I. Masai, L. Caneparo, M. L. Concha, R. Geisler, T. C. Dale, S. W. Wilson and D. L. Stemple (2001) A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. Genes Dev. 15, 14271434.
  • 51
    Van De Water, S., M. Van De Wetering, J. Joore, J. Esseling, R. Bink, H. Clevers and D. Zivkovic (2001) Ectopic Wnt signal determines the eyeless phenotype of zebrafish masterblind mutant. Development 128, 38773888.
  • 52
    Barth, K. A., Y. Kishimoto, K. B. Rohr, C. Seydler, S. Schulte-Merker and S. W. Wilson (1999) Bmp activity establishes a gradient of positional information throughout the entire neural plate. Development 126, 49774987.
  • 53
    Cau, E. and S. W. Wilson (2003) Ash1a and Neurogenin1 function downstream of Floating head to regulate epiphysial neurogenesis. Development 130, 24552466.
  • 54
    Itoh, M., C.-H. Kim, G. Palardy, T. Oda, Y.-J. Jiang, D. Maust, S.-Y. Yeo, K. Lorick, G. J. Wright, L. Ariza-McNaughton, A. M. Weissman, J. Lewis, S. C. Chandrasekharappa and A. B. Chitnis (2003) Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev. Cell 4, 6782.
  • 55
    Schier, A. F., S. C. F. Neuhauss, M. Harvey, J. Malicki, L. Solnica-Krezel, D. Y. R. Stainier, F. Zwartkruis, S. Abdelilah, D. L. Stemple, Z. Rangini, H. Yang and W. Driever (1996) Mutations affecting the development of the embryonic zebrafish brain. Development 123, 165178.
  • 56
    Nishida A., A. Furukawa, C. Koike, Y. Tano, S. Aizawa, I. Matsuo and T. Furukawa (2003) Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat. Neurosci. 6, 12551263.
  • 57
    Hong S.-K., C.-H. Kim, K.-W. Yoo, H.-S. Kim, T. Kudoh, I. B. Dawid and T.-L. Huh (2002) Isolation and expression of a novel neuron-specific onecut homeobox gene in zebrafish. Mech. Dev. 112, 199202.
  • 58
    Inoue, T., M. Hojo, Y. Bessho, Y. Tano, J. E. Lee and R. Kageyama (2002) Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development 129, 831842.
  • 59
    Hatakeyama, J. and R. Kageyama (2004) Retinal cell fate determination and bHLH factors. Semin. Cell Dev. Biol. 15, 8389.
  • 60
    Hatakeyama, J., K. Tomita, T. Inoue and R. Kageyama (2001) Roles of homeobox and bHLH genes in specification of a retinal cell type. Development 128, 13131322.
  • 61
    Arendt, D. (2003) Evolution of eyes and photoreceptor cell types. Int. J. Dev. Biol. 47, 563571.
  • 62
    De Melo, J., X. Qiu, G. Du, L. Cristante and D. D. Eisenstat (2003) Dlx1, Dlx2, Pax6, Brn3b, and Chx10 homeobox gene expression defines the retinal ganglion and inner nuclear layers of the developing and adult mouse retina. J. Comp. Neurol. 461, 187204.
  • 63
    Arendt, D. and J. Wittbrodt (2001) Reconstructing the eyes of Urbilateria. Phil. Trans. R. Soc. Lond. B 356, 15451563.
  • 64
    Provencio, I., G. Jiang, W. J. De Grip, W. P. Hayes and M. D. Rollag (1998) Melanopsin: An opsin in melanophores, brain, and eye. Proc. Natl. Acad. Sci. USA 95, 340345.
  • 65
    Provencio, I., I. R. Rodriguez, G. Jiang, W. P. Hayes, E. F. Moreira and M. D. Rollag (2000) A novel human opsin in the inner retina. J. Neurosci. 20, 600605.
  • 66
    Bellingham, J., D. Whitmore, A. R. Philp, D. J. Wells and R. G. Foster (2002) Zebrafish melanopsin: Isolation, tissue localisation and phylogenetic position. Brain Res. Mol. Brain Res. 107, 128136.
  • 67
    Drivenes, Ø., A. M. Søviknes, L. O. E. Ebbesson, A. Fjose, H.-C. Seo and J. V. Helvik (2003) Isolation and characterization of two teleost melanopsin genes and their differential expression within the inner retina and brain. J. Comp. Neurol. 456, 8493.
  • 68
    Tomonari, S., A. Takagi, S. Akamatsu, S. Noji and H. Ohuchi (2005) A non-canonical photopigment, melanopsin, is expressed in the differentiating ganglion, horizontal, and bipolar cells of the chicken retina. Dev. Dyn. 234, 783790.
  • 69
    Cahill, G. M. and J. C. Besharse (1992) Light-sensitive melatonin synthesis by Xenopus photoreceptors after destruction of the inner retina. Vis. Neurosci. 8, 487490.
  • 70
    Cahill, G. M. and J. C. Besharse (1993) Circadian clock functions localized in Xenopus retinal photoreceptors. Neuron 10, 573577.
  • 71
    Iuvone, P. M., G. Tosini, N. Pozdeyev, R. Haque, D. C. Klein and S. S. Chaurasia (2005) Circadian clocks, clock networks, arylalkylamine N-acetyltransferase, and melatonin in the retina. Prog. Retin. Eye Res. 24, 433456.
  • 72
    Lacalli, T. C. (2004) Sensory systems in amphioxus: A window on the ancestral chordate condition. Brain Behav. Evol. 64, 148162.
  • 73
    Wada, Y., T. Okano, A. Adachi, S. Ebihara and Y. Fukada (1998) Identification of rhodopsin in the pigeon deep brain. FEBS Lett. 424, 5356.
  • 74
    Wada, Y., T. Okano and Y. Fukada (2000) Phototransduction molecules in the pigeon deep brain. J. Comp. Neurol. 428, 138144.
  • 75
    Yoshikawa, T., T. Okano, T. Oishi and Y. Fukada (1998) A deep brain photoreceptive molecule in the toad hypothalamus. FEBS Lett. 424, 6972.
  • 76
    Kojima, D., H. Mano and Y. Fukada (2000) Vertebrate ancient-long opsin: A green-sensitive photoreceptive molecule present in zebrafish deep brain and retinal horizontal cells. J. Neurosci. 20, 28452851.
  • 77
    Halpern, M. E., J. O. Liang and J. T. Gamse (2003) Leaning to the left: Laterality in the zebrafish forebrain. Trends Neurosci. 26, 308313.
  • 78
    Swaroop, A., J. Xu, H. Pawar, A. Jackson, C. Skolnick and N. Agarwal (1992) A conserved retina-specific gene encodes a basic motif/leucine zipper domain. Proc. Natl. Acad. Sci. USA 89, 266270.
  • 79
    Mears, A. J., M. Kondo, P. K. Swain, Y. Takada, R. A. Bush, T. L. Saunders, P. A. Sieving and A. Swaroop (2001) Nrl is required for rod photoreceptor development. Nat. Genet. 29, 447452.
  • 80
    Rehemtulla, A., R. Warwar, R. Kumar, X. Ji, D. J. Zack and A. Swaroop (1996) The basic motif-leucine zipper transcription factor Nrl can positively regulate rhodopsin gene expression. Proc. Natl. Acad. Sci. USA 93, 191195.
  • 81
    Mitton, K. P., P. K. Swain, S. Chen, S. Xu, D. J. Zack and A. Swaroop (2000) The leucine zipper of NRL interacts with the CRX homeodomain. A possible mechanism of transcriptional synergy in rhodopsin regulation. J. Biol. Chem. 275, 2979429799.