• 1
    Cashmore, A. R., J. A. Jarillo, Y. J. Wu and D. Liu (1999) Cryptochromes: Blue light receptors for plants and animals. Science 284, 760765.
  • 2
    Cashmore, A. R. (2003) Cryptochromes: Enabling plants and animals to determine circadian time. Cell 114, 537543.
  • 3
    Lin, C. (2002) Blue light receptors and signal transduction. Plant Cell 14, S207225.
  • 4
    Lin, C. T. and D. Shalitin (2003) Cryptochrome structure and signal transduction. Annu. Rev. Plant Biol. 54, 469496.
  • 5
    Sancar, A. (2000) Cryptochrome: The second photoactive pigment in the eye and its role in circadian photoreception. Annu. Rev. Biochem. 69, 3167.
  • 6
    Partch, C. L. and A. Sancar (2005) Photochemistry and photobiology of cryptochrome blue-light photopigments: The search for a photocycle. Photochem. Photobiol. 81, 12911304.
  • 7
    Ahmad, M. (1999) Seeing the world in red and blue: Insight into plant vision and photoreceptors. Curr. Opin. Plant Biol. 2, 230235.
  • 8
    Banerjee, R. and A. Batschauer (2005) Plant blue-light receptors. Planta 220, 498502.
  • 9
    Ahmad, M. and A. R. Cashmore (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366, 162166.
  • 10
    Koornneef, M., E. Rolff and C. J. P. Spruit (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z. Pflanzenphysiol. Bd. 100, 147160.
  • 11
    Deng, X. W. and P. H. Quail (1999) Signalling in light-controlled development. Semin. Cell Dev. Biol. 10, 121129.
  • 12
    Sancar, A. (1994) Structure and function of DNA photolyase. Biochemistry 33, 29.
  • 13
    Ahmad, M., C. Lin and A. R. Cashmore (1995) Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Plant J. 8, 653658.
  • 14
    Lin, C., M. Ahmad and A. R. Cashmore (1996) Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development. Plant J. 10, 893902.
  • 15
    Lin, C., H. Yang, H. Guo, T. Mockler, J. Chen and A. R. Cashmore (1998) Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc. Natl Acad. Sci. USA 95, 26862690.
  • 16
    Bagnall, D. J., R. W. King and R. P. Hangarter (1996) Blue-light promotion of flowering is absent in hy4 mutants of Arabidopsis. Planta 200, 278280.
  • 17
    Guo, H., H. Yang, T. C. Mockler and C. Lin (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279, 13601363.
  • 18
    Koornneef, M., C. J. Hanhart and J. H. Van Der Veen (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229, 5766.
  • 19
    Brudler, R., K. Hitomi, H. Daiyasu, H. Toh, K. Kucho, M. Ishiura, M. Kanehisa, V. A. Roberts, T. Todo, J. A. Tainer and E. D. Getzoff (2003) Identification of a new cryptochrome class. Structure, function, and evolution. Mol. Cell 11, 5967.
  • 20
    Kleine, T., P. Lockhart and A. Batschauer (2003) An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J. 35, 93103.
  • 21
    Casal, J. J. and M. A. Mazzella (1998) Conditional synergism between cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple mutants in Arabidopsis. Plant Physiol. 118, 1925.
  • 22
    Somers, D. E., P. F. Devlin and S. A. Kay (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282, 14881490.
  • 23
    Neff M. M. and J. Chory (1998) Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol. 118, 2735.
  • 24
    Mockler, T. C., H. Guo, H. Yang, H. Duong and C. Lin (1999) Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126, 20732082.
  • 25
    Hennig, L., M. Funk, G. C. Whitelam and E. Schafer (1999) Functional interaction of cryptochrome 1 and phytochrome D. Plant J. 20, 289294.
  • 26
    Ahmad, M., J. A. Jarillo, O. Smirnova and A. R. Cashmore (1998) The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol. Cell 1, 939948.
  • 27
    Mas, P., P. F. Devlin, S. Panda and S. A. Kay (2000) Functional interaction of phytochrome B and cryptochrome 2. Nature 408, 207211.
  • 28
    Yang, H. Q., Y. J. Wu, R. H. Tang, D. Liu, Y. Liu and A. R. Cashmore (2000) The C-termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 103, 815827.
  • 29
    Deng, X. W., M. Matsui, N. Wei, D. Wagner, A. M. Chu, K. A. Feldmann and P. H. Quail (1992) COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain. Cell 71, 791801.
  • 30
    Wei, N., D. A. Chamovitz and X. W. Deng (1994) Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell 78, 117124.
  • 31
    Yang, H. Q., R. H. Tang and A. R. Cashmore (2001) The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13, 25732587.
  • 32
    Wang, H., L. G. Ma, J. M. Li, H. Y. Zhao and X. W. Deng (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294, 154158.
  • 33
    Sang, Y., Q. H. Li, V. Rubio, Y. C. Zhang, J. Mao, X. W. Deng and H. Q. Yang (2005) N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1. Plant Cell 17, 15691584.
  • 34
    Putterill, J., F. Robson, K. Lee, R. Simon and G. Coupland (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847857.
  • 35
    Coupland, G., M. I. Igeno, R. Simon, R. Schaffer, G. Murtas, P. Reeves, F. Robson, M. Pineiro, M. Costa, K. Lee and P. Suarez-Lopez (1998) The regulation of flowering time by daylength in Arabidopsis. Symp. Soc. Exp. Biol. 51, 105110.
  • 36
    Suarez-Lopez, P. and G. Coupland (1998) Plants see the blue light. Science 279, 13231324.
  • 37
    Yanovsky, M. J. and S. A. Kay (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419, 308312.
  • 38
    Kardailsky, I., V. K. Shukla, J. H. Ahn, N. Dagenais, S. K. Christensen, J. T. Nguyen, J. Chory, M. J. Harrison and D. Weigel (1999) Activation tagging of the floral inducer FT. Science 286, 19621965.
  • 39
    Kobayashi, Y., H. Kaya, K. Goto, M. Iwabuchi and T. Araki (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 19601962.
  • 40
    Roden, L. C., H. R. Song, S. Jackson, K. Morris and I. A. Carre (2002) Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis. Proc. Natl Acad. Sci. USA 99, 1331313318.
  • 41
    Valverde, F., A. Mouradov, W. Soppe, D. Ravenscroft, A. Samach and G. Coupland (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303, 10031006.
  • 42
    Roenneberg, T. and M. Merrow (2000) Circadian clocks: Omnes viae Romam ducunt. Curr. Biol. 10, R742745.
  • 43
    McClung, C. R. (2001) Circadian rhythms in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 139162.
  • 44
    Devlin, P. F. and S. A. Kay (2000) Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12, 24992510.
  • 45
    Blatt, M. R. (2000) Cellular signaling and volume control in stomatal movements in plants. Annu. Rev. Cell Dev. Biol. 16, 221241.
  • 46
    Assmann, S. M. and X. Q. Wang (2001) From milliseconds to millions of years: guard cells and environmental responses. Curr. Opin. Plant Biol. 4, 421428.
  • 47
    Dietrich, P., D. Sanders and R. Hedrich (2001) The role of ion channels in light-dependent stomatal opening. J. Exp. Bot. 52, 19591967.
  • 48
    Schroeder, J. I., G. J. Allen, V. Hugouvieux, J. M. Kwak and D. Waner (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol, 52, 627658.
  • 49
    Roelfsema, M. R., S. Hanstein, H. H. Felle and R. Hedrich (2002) CO2 provides an intermediate link in the red light response of guard cells. Plant J. 32, 6575.
  • 50
    Kagawa, T. and M. Wada (1994) Brief irradiation with red or blue light induces orientational movement of chloroplasts in dark-adapted prothallial cells of the fern Adiantum. J. Plant Res. 107, 389398.
  • 51
    Sakai, T., T. Kagawa, M. Kasahara, T. E. Swartz, J. M. Christie, W. R. Briggs, M. Wada and K. Okada (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl Acad. Sci. USA 98, 69696974.
  • 52
    Jarillo, J. A., H. Gabrys, J. Capel, J. M. Alonso, J. R. Ecker and A. R. Cashmore (2001) Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410, 952954.
  • 53
    Briggs, W. R. and E. Huala (1999) Blue-light photoreceptors in higher plants. Annu. Rev. Cell Dev. Biol. 15, 3362.
  • 54
    Kinoshita, T., M. Doi, N. Suetsugu, T. Kagawa, M. Wada and K. Shimazaki (2001) Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414, 656660.
  • 55
    Folta, K. M. and E. P. Spalding (2001) Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant J. 26, 471478.
  • 56
    Ohgishi, M., K. Saji, K. Okada and T. Sakai (2004) Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc. Natl Acad. Sci. USA 101, 22232228.
  • 57
    Mao, J., Y. C. Zhang, Y. Sang, Q. H. Li and H. Q. Yang (2005) A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc. Natl Acad. Sci. USA 102, 1227012275.
  • 58
    Whippo, C. W. and R. P. Hangarter (2003) Second positive phototropism results from coordinated co-action of the phototropins and cryptochromes. Plant Physiol. 132, 14991507.
  • 59
    Canamero, R. C., N. Bakrim, J. P. Bouly, A. Garay, E. E. Dudkin, Y. Habricot and M. Ahmad (2006) Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Planta DOI DOI: 10.1007/s00425-006-0280-6.
  • 60
    Feldman, L. J. (1984) Regulation of root development. Annu. Rev. Plant Physiol. 35, 223242.
  • 61
    Usami, T., N. Mochizuki, M. Kondo, M. Nishimura and A. Nagatani (2004) Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light. Plant Cell Physiol. 45, 17981808.
  • 62
    Perrotta, G., L. Ninu, F. Flamma, J. L. Weller, R. E. Kendrick, E. Nebuloso and G. Giuliano (2000) Tomato contains homologues of Arabidopsis cryptochromes 1 and 2. Plant Mol. Biol. 42, 765773.
  • 63
    Ninu, L., M. Ahmad, C. Miarelli, A. R. Cashmore and G. Giuliano (1999) Cryptochrome 1 controls tomato development in response to blue light. Plant J. 18, 551556.
  • 64
    Weller, J. L., G. Perrotta, M. E. Schreuder, A. Van Tuinen, M. Koornneef, G. Giuliano and R. E. Kendrick (2001) Genetic dissection of blue-light sensing in tomato using mutants deficient in cryptochrome 1 and phytochromes A, B1 and B2. Plant J. 25, 427440.
  • 65
    Giliberto, L., G. Perrotta, P. Pallara, J. L. Weller, P. D. Fraser, P. M. Bramley, A. Fiore, M. Tavazza and G. Giuliano (2005) Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 137, 199208.
  • 66
    Platten, J. D., E. Foo, F. Foucher, V. Hecht, J. B. Reid and J. L. Weller (2005) The cryptochrome gene family in pea includes two differentially expressed CRY2 genes. Plant Mol. Biol. 59, 683696.
  • 67
    Platten, J. D., E. Foo, R. C. Elliott, V. Hecht, J. B. Reid and J. L. Weller (2005) Cryptochrome 1 contributes to blue-light sensing in pea. Plant Physiol. 139, 14721482.
  • 68
    Chatterjee, M., P. Sharma and J. P. Khurana (2006) Cryptochrome 1 from Brassica napus is up-regulated by blue light and controls hypocotyl/stem growth and anthocyanin accumulation. Plant Physiol. 141, 6174.
  • 69
    Thornton, R. M. and K. V. Thimann (1967) Transient effects of light on auxin transport in the Avena coleoptile. Plant Physiol. 111, 433440.
  • 70
    Wang, X. and M. Iino (1997) Blue-light-induced shrinking of protoplasts from maize coleoptiles and its relationship to coleoptile growth. Plant Physiol. 114, 10091020.
  • 71
    Biswas, K. K., R. Neumann, K. Haga, O. Yatoh and M. Iino (2003) Photomorphogenesis of rice seedlings: a mutant impaired in phytochrome-mediated inhibition of coleoptile growth. Plant Cell Physiol. 44, 242254.
  • 72
    Perrotta, G. Y. G., E. Nebuloso, L. Renzi and G. Giuliano (2001) Tomato and barley contain duplicated copies of cryptochrome 1. Plant Cell Environ. 24, 991997.
  • 73
    Matsumoto, N., T. Hirano, T. Iwasaki and N. Yamamoto (2003) Functional analysis and intracellular localization of rice cryptochromes. Plant Physiol. 133, 14941503.
  • 74
    Zhang, Y. C., S. F. Gong, Q. H. Li, Y. Sang and H. Q. Yang (2006) Functional and signaling mechanism analysis of rice CRYPTOCHROME 1. Plant J. 46, 971983.
  • 75
    Hirose, F., T. Shinomura, T. Tanabata, H. Shimada and M. Takano (2006) Involvement of rice cryptochromes in de-etiolation responses and flowering. Plant Cell Physiol. 47, 915925.
  • 76
    Imaizumi, T., A. Kadota, M. Hasebe and M. Wada (2002) Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens. Plant Cell 14, 373386.
  • 77
    Uenaka, H., M. Wada and A. Kadota (2005) Four distinct photoreceptors contribute to light-induced side branch formation in the moss Physcomitrella patens. Planta 222, 623631.
  • 78
    Sugai, M. and M. Furuya (1985) Action spectrum in ultraviolet and blue light region for the inhibition of red-light-induced spore germination in Adiantum capillus-veneris L. Plant Cell Physiol. 26, 953956.
  • 79
    Hayami, J., A. Kadota and M. Wada (1986) Blue light-induced phototropic response and the intracellular photoreceptive site in Adiantum protonemata. Plant Cell Physiol. 27, 15711577.
  • 80
    Wada, M. and M. Furuya (1972) Phytochrome action on the timing of cell division in Adiantum gametophytes. Plant Physiol. 49, 110113.
  • 81
    Miyata, M., M. Wada and M. Furuya (1979) Effects of phytochrome and blue-near ultraviolet light-absorbing pigment on duration of component phases of the cell cycle in Adiantum gametophytes. Dev. Growth Differ. 21, 577584.
  • 82
    Yatsuhashi, H., A. Kadota and M. Wada (1985) Blue- and redlight action in photoorientation of chloroplasts in Adiantum protonemata. Planta 165, 4350.
  • 83
    Kanegae, T. and M. Wada (1998) Isolation and characterization of homologues of plant blue-light photoreceptor (cryptochrome) genes from the fern Adiantum capillus-veneris. Mol. Gen. Genet. 259, 345353.
  • 84
    Imaizumi, T., T. Kanegae and M. Wada (2000) Cryptochrome nucleocytoplasmic distribution and gene expression are regulated by light quality in the fern Adiantum capillus-veneris. Plant Cell 12, 8196.
  • 85
    Shalitin, D., H. Yang, T. C. Mockler, M. Maymon, H. Guo, G. C. Whitelam and C. Lin (2002) Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 417, 763767.
  • 86
    Shalitin, D., X. Yu, M. Maymon, T. Mockler and C. Lin (2003) Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1. Plant Cell 15, 24212429.
  • 87
    Lin, C., D. E. Robertson, M. Ahmad, A. A. Raibekas, M. S. Jorns, P. L. Dutton and A. R. Cashmore (1995) Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science 269, 968970.
  • 88
    Giovani, B., M. Byrdin, M. Ahmad and K. Brettel (2003) Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nat. Struct. Biol. 10, 489490.
  • 89
    Zeugner, A., M. Byrdin, J. P. Bouly, N. Bakrim, B. Giovani, K. Brettel and M. Ahmad (2005) Light-induced electron transfer in Arabidopsis cryptochrome 1 correlates with in vivo function. J. Biol. Chem. 280, 1943719440.
  • 90
    Brautigam, C. A., B. S. Smith, Z. Ma, M. Palnitkar, D. R. Tomchick, M. Machius and J. Deisenhofer (2004) Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 101, 1214212147.
  • 91
    Bouly, J. P., B. Giovani, A. Djamei, M. Mueller, A. Zeugner, E. A. Dudkin, A. Batschauer and M. Ahmad (2003) Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1. Eur. J. Biochem. 270, 29212928.
  • 92
    Guo, H., H. Duong, N. Ma and C. Lin (1999) The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant J. 19, 279287.
  • 93
    Osterlund, M. T. and X. W. Deng (1998) Multiple photoreceptors mediate the light-induced reduction of GUS-COP1 from Arabidopsis hypocotyl nuclei. Plant J. 16, 201208.
  • 94
    Somers, D. E., T. F. Schultz, M. Milnamow and S. A. Kay (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101, 319329.
  • 95
    Jarillo, J. A., J. Capel, R. H. Tang, H. Q. Yang, J. M. Alonso, J. R. Ecker and A. R. Cashmore (2001) An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410, 487490.
  • 96
    Samach, A., H. Onouchi, S. E. Gold, G. S. Ditta, Z. Schwarz-Sommer, M. F. Yanofsky and G. Coupland (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288, 16131616.
  • 97
    Razem, F. A., A. El-Kereamy, S. R. Abrams and R. D. Hill (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439, 290294.
  • 98
    Oyama, T., Y. Shimura and K. Okada (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev. 11, 29832995.
  • 99
    Ang, L. H., S. Chattopadhyay, N. Wei, T. Oyama, K. Okada, A. Batschauer and X. W. Deng (1998) Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell 1, 213222.
  • 100
    Osterlund, M. T., C. S. Hardtke, N. Wei and X. W. Deng (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462466.