SEARCH

SEARCH BY CITATION

References

  • 1
    Findlay, J. B. C and D. J. C. Pappin (1986) The opsin family of proteins. Biochem. J. 238, 625642.
  • 2
    Gartner, W. and P. Towner (1995) Invertebrate visual pigments. Photochem. Photobiol. 62, 116.
  • 3
    Saranik, J. and K. W. Foster (1997) Rhodopsin guides fungal phototaxis. Nature, 387, 465466.
  • 4
    Balashov, S. P., E. S. Imasheva, V. A. Boichenko, J. Anton, J. M. Wang and J. K. Lanyi (2005) Xanthorhodopsin: A proton pump with a light-harvesting carotenoid antenna. Science 309, 20612064.
  • 5
    Hoff, W. D., P. Dux, K. Hard, B. Devrees, I. M. Nugteren-Roodzant, W. Crielaard, R. Boelens, R. Kaptein, J. Van Beeumen and K. J. Hellingwerf (1994) Thiol ester-linked p-coumaric acid as a new photoactive prosthetic group in a protein with rhodopsin like photochemistry. Biochemistry 33, 1395913962.
  • 6
    Oesterhelt, D. (1998) The structure and mechanism of the family of retinal proteins from halophyllic archaea. Curr. Opin. Struct. Biol. 8, 489500.
  • 7
    Hampp, N. (2000) Bacteriorhodopsin as a photochromic retinal protein for optical switches. Chem. Rev. 100, 17551776.
  • 8
    Oesterhelt, D. and W. Stoeckenius (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature (New Biol.) 233, 149152.
  • 9
    Luecke, H., B. Schobert, H. T. Richter, J. P. Cartailler and J. K. Lanyi (1999) Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291, 899911.
  • 10
    Stockburger, M. and P. Hilderbrandt (1984) Role of water in bacteriorhodopsin’s chromophore: Resonance Raman study. Biochemistry 23, 55395548.
  • 11
    Sandorfy, C. and D. Vocelle (1986) The photochemical event in rhodopsins. Can. J. Chem. 64, 22512266, and references cited therein.
  • 12
    Papadopoulos, G., N. Dencher, G. Zaccai and G. Buldt (1990) Water molecules and exchangable hydrogen ions at the active center of bacteriorhodopsin localized by neutron diffraction. J. Mol. Biol. 214, 1519.
  • 13
    Fischer, W. B., S. Sonar, T. Marti, H. G. Khorana and K. J. Rothschild (1994) Detection of a water molecule in the active site of bacteriorhodopsin: Hydrogen bonding changes during the primary photoreaction. Biochemistry 33, 1275712762.
  • 14
    Pebay-Peyroula, E., G. Rummel, J. P. Rosenbusch and E. M. Landau (1997) X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277, 16761681.
  • 15
    Schobert, B., L. S. Brown and J. K. Lanyi (2003) Crystallographic structures of the M and N intermediates of bacteriorhodopsin: Assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base. J. Mol. Biol. 330, 553570.
  • 16
    Maeda, A., R. B. Gennis, S. P. Balashov and T. G. Ebrey (2005) Relocation of water molecules between the Schiff base and the Thr46[RIGHTWARDS ARROW] Asp96 region during light-driven unidirectional proton transport by bacteriorhodopsin: An FTIR study of the N intermediate. Biochemistry 44, 59605968.
  • 17
    Garczarek, F., L. S. Brown, J. K. Lanyi and K. Gerwert (2005) Proton binding within a membrane protein by a protonated water cluster. Proc. Natl Acad. Sci. USA 102, 36333638.
  • 18
    Beppu, Y., T. Kakitani and F. Tokunaga (1992) Energetics of protonation-deprotonation of the chromophore in retinal proteins. Photochem. Photobiol. 56, 11131117.
  • 19
    Lussier, L. S., C. Sandorfy, L.T. Hoa and D. Vocelle (1987) Effect of acids on the infrared spectra of the Schiff base of trans-retinal. J. Phys. Chem. 91, 22822287.
  • 20
    Sandorfy, C. (1994) Protonation and hydrogen bonding by polyenic Schiff bases. J. Mol. Struct. 322, 7174.
  • 21
    Harosi, F. I. and C. Sandorfy (1995) Retinylidene-opsin Schiff base chromophores and their accessibility to water. Photochem. Photobiol. 61, 510517.
  • 22
    Singh, A. K., C. Sandorfy and J. H. Fendler (1990) Retinylidene Schiff base protonation in surfactant solubilized water pools in heptane. J. Chem. Soc. Chem. Commun. 3, 233234.
  • 23
    Singh, A. K., C. Sandorfy and J. H. Fendler (1990) Retinylidene Schiff base in alkylammonium carboxylate reverse micelles. Biochim. Biophys. Acta 1036, 3440.
  • 24
    Singh, A. K., C. Sandorfy and J. H. Fendler (1990) Retinylidene Schiff base in surfactant solubilized water pools in heptane. Can. J. Chem. 68, 15141522.
  • 25
    Kapil, M. M. and A. K. Singh (1991) Retinylidene Schiff base in phosphatidylcholine reverse micelles: Formation, protonation and stability. J. Chem. Soc. Perkin Trans. 2, 17851789.
  • 26
    Aruna, R. V. and A. K. Singh (1992) Retinal-amino acid Schiff bases in reverse micellar matrix. Tetrahedron Lett. 33, 13791382.
  • 27
    Shetty, A. S., N. Majumdar, R. V. Aruna and A. K. Singh (1993) all-trans-N-Retinylidene-tryptamine Schiff base in AOT reverse micelles: A novel model system to study secondary interactions in rhodopsins. Indian J. Chem. 32B, 208210.
  • 28
    Das, J. and A. K. Singh (1994) Liposome stabilized retinal Schiff bases. Indian J. Chem. 33B, 615617.
  • 29
    Singh, A. K. and N. Majumdar (1994) Bathochromicity of retinal Schiff bases in cellulose matrix. Photochem. Photobiol. 60, 510515.
  • 30
    Singh, A. K. and N. Majumdar (1995) all-trans-N-Retinylidene-tryptamine Schiff base in surfactant solubilized water pools in heptane: A fluorescence study. J. Photochem. Photobiol. B: Biology 30, 105113.
  • 31
    Singh, A. K. and R. V. Aruna (1995) Retinal Schiff base chromophore in the surfactant solubilized water pools in CCl4. Biochim. Biophys. Acta 1245, 167172.
  • 32
    Singh, A. K. and J. Das (1996) Metal cation assisted protonation of retinylidene Schiff base in aqueous acetonitrile and in reverse micelles. J. Chem. Soc. Perkin Trans 2, 17391742.
  • 33
    Singh, A. K. and N. Majumdar (1997) Role of hydrogen bond interactions in the protonation and wavelength regulation in retinal Schiff base chromophores. J. Photochem. Photobiol. B. Biol. 39, 135139.
  • 34
    Singh, A. K. and N. Majumdar (1997) Role of metal cations in colour transition and hydrolysis of the chromophores of retinal-binding photoreceptor proteins. J. Photochem. Photobiol. B. Biol. 39, 140145.
  • 35
    Gat, Y. and M. Sheves (1993) A mechanism for controlling the pKa of the retinal protonated Schiff base in retinal protein. J. Am. Chem. Soc. 115, 37723773, and references cited therein.
  • 36
    Sheves, M., K. Nakanishi and B. Honig (1979) Through-space electrostatic effects in electronic spectra. Experimental evidence for the external point-charge model of visual pigments. J. Am. Chem. Soc. 101, 70867088.
  • 37
    Nakanishi, K., V. B-Nair, M. Arnaboldi, K. Tsujimoto and B. Honig (1980) An external point charge model for bacteriorhodopsin to account for its purple colour. J. Am. Chem. Soc. 102, 79457947.
  • 38
    Harbison, G. S., S. O. Smith, J. A. Pardoen, J. M. L. Courtin, J. Lugtenburg, J. Herzfeld, R. A. Mathies and R. G. Griffin (1985) Solid state 13C NMR detection of a perturbed 6-s-trans chromophore in bacteriorhodopsin. Biochemistry 24, 69556962.
  • 39
    Yan, B., J. L. Spudich, P. Mazur, S. Vunnam, F. Derguini and K. Nakanishi (1995) Spectral tuning in bacteriorhodopsin in the absence of counterion and coplanarisation effects. J. Biol. Chem. 270, 2966829670.
  • 40
    Blatz, P. E., J. H. Mohler and H. V. Navangul (1972) Anion-induced wavelength regulation of absorption maxima of Schiff bases of retinal. Biochemistry 11, 848855.
  • 41
    Sakmar, T. P., R. R. Franke and H. B. Khorana (1991) The role of the retinylidene Schiff base counterion in rhodopsin in determining wavelength absorbance and Schiff base pKa. Proc. Natl Acad. Sci. USA 88, 30793083.
  • 42
    Houjou, H., Y. Inoue and M. Sakurai (1998) Physical origin of the Opsin shift of bacteriorhodopsin. Comprehensive analysis based on medium effect theory of absorption spectra. J. Am. Chem. Soc. 120, 44594470.
  • 43
    Rettig, W. (1996) Charge separation in the excited states of decoupled systems–TICT compounds and implications regarding the development of new laser dyes and primary processes of vision and photosynthesis. Angew. Chem. Int. Ed. 25, 971988.
  • 44
    Aharoni, A., A. Khatchatouriants, A. Manevitch, A. Lewis and M. Sheves (2003) Protein-β-ionone ring interactions enhance the light-induced dipole of the chromophore in bacteriorhodopsin. J. Phys. Chem. B. 107, 62216225.
  • 45
    Irving, C. S., G. W. Byers and P. A. Leermakers (1969) Effect of solvent polarizability on the absorption spectrum of all-trans-retinylpyrrolidiniminium perchlorate. J. Am. Chem. Soc. 91, 21412143.
  • 46
    Yan, B., J. L. Spudich, P. Mazur, S. Vunnam, F. Derguini and K. Nakanishi (1995) Spectral tuning in bacteriorhodopsin in the absence of counterion and coplanarization effects. J. Biol. Chem. 270, 2966829670.
  • 47
    Houjou, H., Y. Inoue and M. Sakurai (2001) Study of the opsin shift of bacteriorhodopsin: Insight from QM/MM calculations with electronic polarization effects of the protein environment. J. Phys. Chem. B 105, 867869.
  • 48
    Ren, L., C. H. Martin, K. J. Wise, N. B. Gillespie, H. Luecke, J. K. Lanyi, J. L. Spudich and R. R. Birge (2001) Molecular mechanism of spectral tuning in sensory rhodopsin II. Biochemistry 40, 1390613914.
  • 49
    Hays, T. R., S. H. Lin and H. Eyring (1980) Wavelength regulation in rhodopsin: Effects of dipoles and amino acid side chains. Proc. Natl Acad. Sci. USA 77, 63146318.
  • 50
    Kakitani, H., T. Kakituni, H. Rodman and B. Honig (1985) On the mechanism of wavelength regulation in visual pigments. Photochem. Photobiol. 41, 471479.
  • 51
    Takahashi, Y. and T. G. Ebrey (2003) Molecular basis of spectral tuning in the new short wavelength sensitive visual pigment. Biochemistry 42, 60256034.
  • 52
    Birge, R. R. (1990) Photophysics and molecular electronic applications of the rhodopsin. Ann. Rev. Phys. Chem. 41, 683733.
  • 53
    Birge, R. R. (1995) Protein-based computers. Sci. Am. 272, 9095.
  • 54
    Birge, R. R., N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman and K. J. Wise (1999) Biomolecular electronics: Protein-based associative processors and volumetric memories. J. Phys. Chem. B. 103, 1074610766.
  • 55
    Balogh-Nair, V. and K. Nakanishi (1982) Synthetic analogs of retinal, bacteriorhodopsin and bovine rhodopsin. Methods Enzymol. 88, 496506.
  • 56
    Ebrey, T. G. (1982) Synthetic pigments of rhodopsin and bacteriorhodopsin. Methods Enzymol. 88, 516521.
  • 57
    Liu, R. S. H. and A. E. Asato (1984) Photochemistry and synthesis of stereoisomers of vitamin A. Tetrahedron, 40, 19311969.
  • 58
    Sporn, M. B., A. B. Roberts and D. S. Goodman (1984) The Retinoids, Vol. 1. Academic Press, New York.
  • 59
    Singh, A. K. and M. Darshi (2003) Bacteriorhodopsin analogs from diphenylpolyene chromophores. Photochem. Photobiol. 78, 503510.
  • 60
    Singh, A. K., M. Roy, S. Sonar and M. Kapil (1988) Bio-organic chemistry of the purple membrane of halobacterium halobium chromophore and apoprotein modified bacteriorhodopsin. J.Biosci. 13, 5569.
  • 61
    Singh, A. K. and M. Roy (1990) Bacteriorhodopsin analog from anthryl chromophore. Can. J. Chem. 68, 383389.
  • 62
    Singh, A. K., N. Majumdar and J. Das (1996) Novel bacteriorhodopsin analogues based on azo chromophores. J. Am. Chem. Soc. 118, 61856191.
  • 63
    Hota, P. K. (2006) Synthetic photoresponsive systems: Fluorescence and photo-isomerization studies of indolic ethenyl and dienyl chromophores and development of bacteriorhodopsin analogues. Ph.D. Thesis. IIT Bombay.
  • 64
    Mao, B., R. Govindjee, T. G. Ebrey, M. Arnaboldi, V. Balogh-Nair, K. Nakanishi and R. Crouch (1981) Photochemical and functional properties of bacteriorhodopsins formed from 5,6-dihydro-and 5,6–dihydrodesmethylretinals. Biochemistry 20, 428435.
  • 65
    Iwasa, T., M. Ito and F. Tokunaga (1992) A novel bacteriorhodopsin analog with conformationally 6-s-cis fixed retinals. Photochem. Photobiol. 56, 921927.
  • 66
    Rao, V., Z. Hayathirtha, P. Jesmael, R. Crouch, M. Denny and R. S. H. Liu (1985) Isomers of 3,7,11-trimethyldodeca-2,4,6,8,10-pentaenal (a linear analog of retinal) and lower homologs in their interaction with bovine opsin and bacterioopsin. Photochem. Photobiol. 41, 171174.
  • 67
    Zingoni, J., Y.-O. Sun and R. K. Crouch (1986) Effect of variation of retinal polyene side-chain length on formation and function of bacteriorhodopsin analog pigments. Biochemistry 25, 20222027.
  • 68
    Fang, J. M., J. D. Carriker, V. Balogh-Nair and K. Nakanishi (1983) Evidence for the necessity of double bond (13-ene) isomerization in the proton pumping of bacteriorhodopsin. J. Am. Chem. Soc. 105, 51625164.
  • 69
    Aharoni, A., L. Weiner, M. Ottolenghi and M. Sheves (2000) Bacteriorhodopsin experiences light induced conformational alterations in nonisomerizable C13–C14 pigments. A study with EPR. J. Biol. Chem. 275, 2101021016.
  • 70
    Sheves, M., N. Friedman and A. Albeck (1985) Primary photochemical event in bacteriorhodopsin: Study with artificial pigments. Biochemistry 24, 12601265.
  • 71
    Bayley, H., R. Radhakrishnan, K. S. Huang and H. G. Khorana (1981) Light-driven proton translocation by bacteriorhodopsin reconstituted with the phenyl analog of retinal. J. Biol. Chem. 256, 37973801.
  • 72
    Akhtar, M., L. Jallo and A. H. Johnson (1982) Interaction of a conformationally rigid analogue of retinal with bacterio-opsin. J. Chem. Soc. Chem. Commun. 1, 4446.
  • 73
    Das, J., R. K. Crouch, R. Govindjee, S. Balashov and T. Ebrey (1999) Studies on pyrylretinal analogs of bacteriorhodopsin. Photochem. Photobiol. 70, 949956.
  • 74
    Ivanova, D., V. Kolev, T. Lazarova and E. Padros (1999) Synthesis of new heterocyclic and polycyclic aromatic retinals and their bacteriorhodopsin analogues. Tetrahedron Lett. 40, 26452648.
  • 75
    Aharoni, A., M. Ottolenghi and M. Sheves (2001) Retinal isomerization in bacteriorhodopsin is controlled by specific chromophore-protein interactions. A study with non covalent artificial pigments. Biochemistry 40, 1331013319.
  • 76
    Liu, R. S. H., C. W. Liu, X.-Y. Li and A. E. Asato (1991) Butyl conformational reorganization as a possible explanation for the longitudinal flexibility of the binding site of bacteriorhodopsin. The azulene and C-22 retinoid analogs. Photochem. Photobiol. 54, 625631.
  • 77
    Muthyala, R. S., M. Alam and R. S. H. Liu (1998) Alkylated azulenic retinal and bacteriorhodopsin analogs. Tetrahedron Lett. 39, 58.
  • 78
    Liu, R. S. H., R. S. Muthyala, X.-S. Wang and A. E. Asato (2000) Correlation of substituent effects and energy levels of the two lowest excited states of the azulenic chromophore. Org. Lett. 2, 269271.
  • 79
    Muthyala, R., D. Watanabe, A. E. Asato and R. S. H. Liu (2001) The nature of the delocalized cations in azulenic bacteriorhodopsin analogs. Photochem. Photobiol. 74, 837845.
  • 80
    Rosenfeld, T., B. Honig, M. Ottolenghi, J. Hurley and T. G. Ebrey (1977) cis,trans-Isomerisation in the photochemistry of vision. Pure Appl. Chem. 49, 341351.
  • 81
    Warshel, A. (1976) Bicycle-pedal model for the first step in the vision process. Nature (New Biol.) 260, 679683.
  • 82
    Liu, R. S. H. (2001) Photoisomerisation by Hula-twist: A fundamental supramolecular photochemical reaction. Acc. Chem. Res. 34, 555562.
  • 83
    Hudson, B. S., B. E. Kohler and K. Schulten (1982) Linear polyene electronic structure and potential energy surface. In Excited States, Vol. 6. (Edited by E. C.Lim), pp. 195. Academic Press, New York.
  • 84
    Allen, M. T. and D. G. Whitten (1989) The photophysics and photochemistry of α,ω-diphenyl singlet states. Chem. Rev. 89, 16911702.
  • 85
    Saltiel, J. and Y.-P. Sun (1990) Cis-trans isomerisation of C = C double bonds. In Photochromism: Molecules and systems (Edited by H.Durr and H.Bouas-Laurent), pp. 64163. Elsevier, New York.
  • 86
    Waldeck, D. H. (1991) Photoisomerisation dynamics of stilbenes. Chem. Rev. 91, 415436.
  • 87
    Gorner, H. and H. J. Kuhn (1995) Cis-trans photoisomerisation of stilbene and stilbene like molecules. Adv. Photochem. 19, 58115.
  • 88
    Arai, T. and K. Tokumaru (1995) Present status of the photoisomerisation about ethylenic bonds. Adv. Photochem. 20, 157.
  • 89
    Singh, A. K. and G. R. Mahalaxmi (2000) Photoprocesses of linearly conjugated C = C polyenes. Proc. Natl Acad. Sci. India, Sect. A. 70, 126.
  • 90
    Singh, A. K. (2001) Excited state properties of linear polyenes: Fluorescence, fluorescence probe and photoisomerisation studies of donor-acceptor diarylbutadienes. J. Indian. Chem. Soc. 78, 5372.
  • 91
    Momotake, A. and T. Arai (2004) Photochemistry and photophysics of stilbene dendrimers and related compounds. J. Photochem. Photobiol. C. 5, 125.
  • 92
    Mordzinski, A., A. L. Sobolewski and D. H. Levy (1997) Dual fluorescence in aromatic nitriles: The role of the charge-transfer state. J. Phys. Chem. A 101, 82218226.
  • 93
    Il’ichev, Y. V., W. Kuhnle and K. A. Zachariasse (1998) Intramolecular charge transfer in dual fluorescent 4-(dialkylamino)benzonitriles. Reaction efficiency enhancement by increasing the size of the amino and benzonitrile subunits by alkyl substituents. J. Phys. Chem. A 102, 56705680.
  • 94
    Parusel, A. B. J., G. Kohler and S. Grimme (1998) Density functional study of excited charge transfer state formation in 4-(N, N-dimethylamino)benzonitrile. J. Phys. Chem. A 102, 62976306.
  • 95
    Lapouyade, R., K. Czeschka, W. Majenz, W. Rettig, E. Gilabert and C. Rulliere (1992) Photophysics of donor-acceptor substituted stilbenes. A time-resolved fluorescence study using selectively bridged dimethylamino cyano model compounds. J. Phys. Chem. 96, 96439650.
  • 96
    Pines, D., E. Pines and W. Rettig (2003) Dual fluorescence and excited state structural relaxations in donor-acceptor stilbenes. J. Phys. Chem. A 107, 236242.
  • 97
    Abraham, E., J. Oberle, G. Jonusauskas, R. Lapouyade and C. Rulliere (1997) Photophysics of 4-dimethylamino-4′-cyanostilbene and model compounds: Dual excited states revealed by sub-picosecond transient absorption and Kerr ellipsometry. Chem. Phys. 214, 409423.
  • 98
    Singh, A. K. and S. Kanvah (2001) Photophysical studies of substituted 1,2-diarylethenes: Twisted intramolecular charge transfer fluorescence in dimethoxy cyano-substituted 1,2-diarylethene. J. Chem. Soc. Perkin Trans 2, 395401.
  • 99
    Singh, A. K. and S. Kanvah (2000) Effect of microheterogeneous media on the fluorescence and fluorescence probe properties of donor-acceptor diarylbutadienes. New. J. Chem. 24, 639646.
  • 100
    Johnson, I. D., E. W. Thomas and R. B. Cundall (1985) Fluorescence solvatochromism of nitrodiphenylhexatrienes. J. Chem. Soc. Faraday Trans 2, 81.
  • 101
    Singh, A. K., D. Manjula and S. Kanvah (2000) α,ω-Diphenylpolyenes cabable of exhibiting twisted intramolecular charge transfer fluorescence: A fluorescence and fluorescence probe study of nitro-and nitrocyano-substituted 1,4-diphenylbutadienes. J. Phys. Chem. A 104, 464471.
  • 102
    Singh, A. K. and S. Kanvah (2001) A fluorescence emission study of nitro-and nitromethyl-substituted 1,4-diarylbutadienes in solid state. Indian J. Chem. 40B, 965973.
  • 103
    Singh, A. K. and G. R. Mahalaxmi (2000) Excited state properties of α,ω-diphenylpolyenes: Photophysical and photochemical studies of donor-acceptor diarylbutadienes. Photochem. Photobiol. 71, 387396.
  • 104
    Sonoda, Y., W. M. Kwok, Z. Petrasek, R. Ostler, P. Matousek, M. Towrie, A. W. Parker and D. Phillips (2001) Solvent effects on the photophysical and photochemical properties of (E,E,E)-1,6-bis(4-nitrophenyl)hexa-1,3,5-triene. J. Chem. Soc. Perkin Trans 2, 308314.
  • 105
    Singh, A. K. and P. K. Hota (2006) Fluorescence and photoisomerization studies of p-nitrophenyl substituted indolic ethenes. J. Phys. Org. Chem. 19, 4352.
  • 106
    Singh, A. K. and P. K. Hota (2005) Absorption and fluorescence spectral properties of donor-acceptor ethenes bearing indole and p-nitrophenyl substituents. Res. Chem. Intermed. 31, 85101.
  • 107
    Singh, A. K. and P. K. Hota (2003) Photoreactivity of donor-acceptor ethenes. Indian J. Chem. 42B, 20482053.
  • 108
    Chen, Z., M. Sheves, A. Lewis and O. Bouevitch (1994) A comparison of the second harmonic generation from light-adapted, dark-adapted, blue, and acid purple membrane. Biophys. J. 67, 11551160.
  • 109
    Huang, J. Y., Z. Chen and A. Lewis (1989) Second-harmonic generation in purple membrane-poly(vinyl alcohol) films: Probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412. J. Phys. Chem. 93, 33143320.
  • 110
    Bouevitch, O., A. Lewis and M. Sheves (1995) Probing bacteriorhodopsin photochemistry with nonlinear optics: Comparing the second harmonic generation of bR and the photochemically induced intermediate K. J. Phys. Chem. 99, 1064810657.
  • 111
    Birge, R. R and C. F. Zhang (1990) Two-photon double resonance spectroscopy of bacteriorhodopsin. Assignment of the electronic and dipolar properties of the low-lying 1Ag*-like and 1Bu*+-like π,π* states. J. Chem. Phys. 92, 71787195.
  • 112
    Clays, K., E. Hendrick, M. Triest, T. Verbiest, A. Persoons, C. Dehu and J. L. Bredas (1993) Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution. Science 262, 14191422.
  • 113
    Zadok, U., A. Khatchatouriants, A. Lewis, M. Ottolenghi and M. Sheves (2002) Light-induced charge redistribution in the retinal chromophore is required for initiating the bacteriorhodopsin photocycle. J. Am. Chem. Soc. 124, 1184411845.