Phytochrome-Mediated Inhibition of Coleoptile Growth in Rice: Age-dependency and Action Spectra


  • This invited paper is part of the Symposium-in-Print: Photobiology in Asia.

*email: (Makoto Takano)


Phytochrome has been shown to be the major photoreceptor involved in the photo-inhibition of coleoptile growth in Japonica-type rice (Oryza sativa L.). We have characterized this typical photomorphogenetic response of rice using mutants deficient in phytochrome A (phyA) and phytochrome B (phyB) and with respect to age-dependency and action spectra. Seedlings were irradiated with a pulse of light 40 h or 80 h after germination (i.e. at an early or late developmental stage) and the final coleoptile length of these seedlings was determined. A saturating pulse of red light (R) had a stronger effect when it was given in the late stage than in the early stage. It was found that the photo-inhibition is mediated by both the phyA and the phyB in the late stage but predominantly by phyB in the early stage. Consistent with many other reported responses, the photo-inhibition in the phyA mutant, which was observed in the early and late developmental stages and is thought to be mediated mainly by phyB, occurred in the low-fluence range (101–103 μmol m−2) of R and was far-red-light (FR)-reversible; the photo-inhibition in the phyB mutant, which was observed in the late developmental stage and is thought to be mediated mainly by phyA, occurred in the very-low-fluence range (10−2–100 μmol m−2) and was FR-irreversible. The action spectra (350–800 nm at 50 nm intervals) obtained at the two developmental stages using phyA and phyB mutants indicated that both the phyB-mediated low-fluence response and the phyA-mediated very-low-fluence response have a major peak at 650 nm and a minor peak at 400 nm.