SEARCH

SEARCH BY CITATION

References

  • 1
    Delsuc, F., H. Brinkmann, D. Chourrout and H. Philippe (2006) Tunicates and not cephalochordates are the closest living relative of vertebrates. Nature 493, 965968.
  • 2
    Meinertzhagen, I. A., P. Lemaire and Y. Okamura (2004) The neurobiology of the ascidian tadpole larva: Recent developments in an ancient chordate. Annu. Rev. Neurosci. 27, 453485.
  • 3
    Dehal, P., Y. Satou, R. K. Campbell, J. Chapman, B. Degnan, A. De Tomaso, B. Davidson, A. Di Gregorio, M. Gelpke, D. M. Goodstein, N. Harafuji, K. E. M. Hastings, I. Ho, K. Hotta, W. Huang, T. Kawashima, P. Lemaire, D. Martinez, I. A. Meinertzhagen, S. Necula, M. Nonaka, N. Putnam, S. Rash, H. Saiga, M. Satake, A. Terry, L. Yamada, H.-G. Wang, S. Awazu, K. Azumi, J. Boore, M. Branno, S. Chin-bow, R. DeSantis, S. Doyle, P. Francino, D. N. Keys, S. Haga, H. Hayashi, K. Hino, K. S. Imai, K. Inaba, S. Kano, K. Kobayashi, M. Kobayashi, B.-I. Lee, K. W. Makabe, C. Manohar, G. Matassi, M. Medina, Y. Mochizuki, S. Mount, T. Morishita, S. Miura, A. Nakayama, S. Nishizaka, H. Nomoto, F. Ohta, K. Oishi, I. Rigoutsos, M. Sano, A. Sasaki, Y. Sasakura, E. Shoguchi, T. Shin-i, A. Spagnuolo, D. Stainier, M. M. Suzuki, O. Tassy, N. Takatori, M. Tokuoka, K. Yagi, F. Yoshizaki, S. Wada, C. Zhang, P. D. Hyatt, F. Larimer, C. Detter, N. Doggett, T. Glavina, T. Hawkins, P. Richardson, S. Lucas, Y. Kohara, M. Levine, N. Satoh and D. S. Rokhsar (2002) The draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins. Science 298, 21572167.
  • 4
    Grave, C. (1920) Amaroucium pellucidum (Leidy) form constellatum (Verrill) I. The activities and reactions of the tadpole larva. J. Exp. Zool. 30, 239257.
  • 5
    Mast, S. O. (1921) Reaction to light in the larvae of the ascidians, Amaroucium constellatum and Amaroucium pellucidum with special reference to photic orientation. J. Exp. Zool. 34, 149187.
  • 6
    Svane, I. B. and C. M. Young (1989) The ecology and behavior of ascidian larvae. Oceanogr. Mar. Biol. Annu. Rev. 27, 4590.
  • 7
    Tsuda, M., D. Sakurai and M. Goda (2003) Direct evidence for the role of pigment cells in the brain of ascidian larvae by laser ablation. J. Exp. Biol. 206, 14091417.
  • 8
    Sakurai, D., M. Goda, Y. Koumura, T. Horie, H. Iwamoto, H. Ohtsuki and M. Tsuda (2004) The role of pigment cells in the brain of ascidian larva. J. Comp. Neurol. 475, 7082.
  • 9
    Nakagawa, M., T. Miyamoto, M. Ohkuma and M. Tsuda (1999) Action spectrum for the photophobic response of Ciona intestinalis (Ascidieacea, Urochordata) larvae implicates retinal protein. Photochem. Photobiol. 70, 359362.
  • 10
    Kawakami, I., I. Siraishi and M. Tsuda (2002) Photoresponse and learning behavior of ascidian larvae, a primitive chordate, to repeated stimuli of step-up and step-down of light. J. Biol. Phys. 28, 111.
  • 11
    Tsuda, M., I. Kawakami and S. Shiraishi (2003) Sensitization and habituation of the swimming behavior in ascidian larvae to light. Zool. Sci. 20, 1322.
  • 12
    McHenry, M. J. and J. A. Strother (2003) The kinematics of phototaxis in larvae of the ascidian Aplidium constellatum. Mar. Biol. 142, 173184.
  • 13
    Gorman, A. L. F., J. S. McReynolds and S. N. Barnes (1971) Photoreceptors in primitive chordates: Fine structure, hyperpolarizing receptor potentials, and evolution. Science 172, 10521054.
  • 14
    Kusakabe, T., R. Kusakabe, I. Kawakami, Y. Satou, N. Satoh and M. Tsuda (2001) Ci-opsin1, a vertebrate-type opsin gene, expressed in the larval ocellus of the ascidian Ciona intestinalis. FEBS Lett. 506, 6972.
  • 15
    Inada, K., T. Horie, T. Kusakabe and M. Tsuda (2003) Targeted knockdown of an opsin gene inhibits the swimming behaviour photoresponse of ascidian larvae. Neurosci. Lett. 347, 167170.
  • 16
    Tsuda, M. (1987) Photoreception and phototransduction in invertebrate photoreceptors. Photochem. Photobiol. 45, 915931.
  • 17
    Nakagawa, M., T. Iwasa, S. Kikkawa, M. Tsuda and T. G. Ebrey (1999b) How vertebrate and invertebrate visual pigments differ in their mechanism of photoactivation. Proc. Natl Acad. Sci. USA 86, 83098313.
  • 18
    Hardie, R. C. and P. Raghu (2001) Visual transduction in Drosophila. Nature 413, 186193.
  • 19
    Tsuda, M. and T. Tsuda (1990) Two distinct light regulated G-proteins in octopus photoreceptors. Biochim. Biophys. Acta 1052, 204210.
  • 20
    Yoshida, R., T. Kusakabe, M. Kamatani, M. Daitoh and M. Tsuda (2002) Central nervous system-specific expression of G protein α subunits in the ascidian Ciona intestinalis. Zool. Sci. 19, 10791088.
  • 21
    Yoshida, R., D. Sakurai, T. Horie, I. Kawakami, M. Tsuda and T. Kusakabe (2004) Identification of neuron-specific promoters in Ciona intestinalis. Genesis 39, 130140.
  • 22
    Krupnick, J. G. and J. L. Benovic (1998) The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu. Rev. Pharmacol. Toxicol. 38, 289319.
  • 23
    Satoh, A. K. and D. F. Ready (2005) Arrestin1 mediates light-dependent rhodopsin endocytosis and cell survival. Curr. Biol. 15, 17221733.
  • 24
    Mayeenuddin, L. H. and J. Mitchell (2003) Squid visual arrestin: cDNA cloning and calcium-dependent phosphorylation by rhodopsin kinase (SQRK). J. Neurochem. 85, 592600.
  • 25
    Nakagawa, M., H. Orii, N. Yoshida, E. Jojima, T. Horie, R. Yoshida, T. Haga and M. Tsuda (2002) Ascidian arrestin (Ci-arr), the origin of the visual and nonvisual arrestins of vertebrate. Eur. J. Biochem. 269, 51125118.
  • 26
    Tsuda, M., T. Kusakabe, H. Iwamoto, T. Horie, Y. Nakashima, M. Nakagawa and K. Okunou (2003c) Origin of the vertebrate visual cycle: II. Visual cycle proteins are localized in whole brain including photoreceptor cells of a primitive chordate. Vision Res. 43, 30453053.
  • 27
    Jin, M., S. Li, W. N. Moghrabi, H. Sun and G. H. Travis (2005) Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 122, 449459.
  • 28
    Moiseyev, G., Y. Chen, Y. Takahashi, B. X. Wu and J. Ma (2005) RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc. Natl Acad. Sci. USA 102, 1241312418.
  • 29
    Redmond, T. M., S. Gentleman, T. Duncan, S. Yu, B. Wiggert, E. Grantt and F. X. Cunningham Jr (2001) Identification, expression, and substrate specificity of a mammalian β-carotene 15,15′-dioxygenase. J. Biol. Chem. 276, 65606565.
  • 30
    Saari, J. C., M. Nawrot, B. N. Kennedy, G. G. Garwin, J. B. Hurley, J. Huang, D. E. Possin and J. W. Crabb (2001) Visual cycle impartment in cellular retinaldehyde binding protein (CRALBP) knockout mice results in delayed dark adaptation. Neuron 29, 739748.
  • 31
    Chen, P., W. Hao, L. Rife, X. P. Wang, D. Shen, J. Chen, T. Ogden, G. B. Van Boemel, L. Wu, M. Yang and H. K. W. Fong (2001) A photic visual cycle of rhodopsin regeneration is dependent on Rgr. Nat. Genet. 28, 256260.
  • 32
    Wenzel, A., V. Oberhauser, E. N. Jr Pugh, T. D. Lamb, C. Grimm, M. Samardzija, E. Fahl, M. W. Seeliger, C. E. Remé and J. Von Lintig (2005) The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light. J. Biol. Chem. 280, 2987429884.
  • 33
    Nakashima, Y., T. Kusakabe, R. Kusakabe, A. Terakita, Y. Shichida and M. Tsuda (2003) Origin of the vertebrate visual cycle: Genes encoding retinal photoisomerase and two putative visual cycle proteins are expressed in whole brain of a primitive chordate. J. Comp. Neurol. 460, 180190.
  • 34
    Takimoto, N., T. Kusakabe, T. Horie, Y. Miyamoto and M. Tsuda (2006) Origin of the vertebrate visual cycle: III. Distinct distribution of RPE65 and β-carotene 15,15′-monooxygenase homologues in Ciona intestinalis. Photochem. Photobiol. 82, 14681474.
  • 35
    Hecht, S (1918) The photic sensitivity of Ciona intestinalis. J. Gen. Physiol. 1, 147166.
  • 36
    Goodbody, I. (1974) The physiology of ascidians. In Advances in Marine Biology, Vol. 11 (Edited by F. S.Russel), pp. 149. Academic Press, London.
  • 37
    Lambert, C. C. and C. L. Brandt (1967) The effect of light on the spawning of Ciona intestinalis. Biol. Bull. 132, 222228.
  • 38
    Numakunai, T. and Z. Hoshino (1980) Periodic spawning of three types of the ascidian, Halocynthia roretzi (Drasche), under continuous light conditions. J. Exp. Zool. 212, 381387.
  • 39
    Dilly, P. N. and J. J. Worken (1973) Studies on the receptors in Ciona intestinalis. IV. The ocellus in the adult. Micron 4, 1129.
  • 40
    Woolacott, R. M. (1974) Microfilaments and the mechanism of light-triggered sperm release in ascidians. Dev. Biol. 40, 186195.
  • 41
    Woolacott, R. M. and M. R. Porter (1977) A synchronized multicellular movement initiated by light and mediated by microfilaments. Dev. Biol. 61, 4157.
  • 42
    Kajiwara, S., S. Tamotsu, Y. Morita and T. Numakunai (1990) Retinal isomers in the cerebral ganglion of the ascidian, Halocynthia roretzi. Invertebr. Reprod. Dev. 17, 155158.
  • 43
    Ohkuma, M. and M. Tsuda (2000) Visualization of retinal proteins in the cerebral ganglion of ascidian, Halocynthia roretzi. Zool. Sci. 17, 161170.
  • 44
    Ohkuma, M., Y. Katagiri, M. Nakagawa and M. Tsuda (2000) Possible involvement of light regulated gonadotropin-releasing hormone neurons in biological clock for reproduction in the cerebral ganglion of the ascidian, Halocynthia roretzi. Neurosci. Lett. 293, 58.
  • 45
    Tsutsui, H. and Y. Oka (2000) Light-sensitive voltage responses in the neurons of the cerebral ganglion of Ciona savignyi (Chordata: Ascidiacea). Biol. Bull. 198, 2628.
  • 46
    Blaxter, J. H. S. (1968) Visual threshold and spectral sensitivity of herring larvae. J. Exp. Biol. 48, 3953.
  • 47
    Blaxter, J. H. S. (1969) Visual thresholds and spectral sensitivity of flatfish larvae. J. Exp. Biol. 51, 221230.
  • 48
    Roberts, A. (1978) Pineal eye and behavior in Xenopus tadpoles. Nature 273, 774775.
  • 49
    Chamalbert, G., C. Macquart-Moulin, G. Patriti and D. Chiki (1991) Ontogeny of variation in phototaxis of larval and juvenile sole (Solea solea L.). J. Exp. Mar. Biol. Ecol. 149, 207225.
  • 50
    Burke, J. S., M. Tanaka and T. Seikai (1995) Influence of light and salinity on the behaviour of larval Japanese flounder (Paralichthys olivaceus) and implications for inshore migration. Netherland J. Sea Res. 34, 5969.
  • 51
    Forward, R. B., J. S. Burke, D. Rittschof and J. M. Welch (1996) Photoresponses of larval Atlantic menhaden (Brevoortia tyrannus Latrobe) in offshore and estuarine waters: Implications for transport. J. Exp. Mar. Ecol. Biol. 199, 123135.
  • 52
    Foster, R. G. and A. Roberts (1982) The pineal eye in Xenopus laevis embryos and larvae: A photoreceptor with a direct excitatory effect on behaviour. J. Comp. Physiol. 145, 413419.
  • 53
    Jamieson, D. and A. Roberts (2000) Responses of young Xenopus laevis tadpoles to light dimming: Possible roles for the pienal eye. J. Exp. Biol. 203, 18571867.
  • 54
    Meléndez-Ferro, M., B. Villar-Cheda, X. M. Abalo, E. Pélez-Costas, R. Rodoríguez-Muñoz, W. J. Degrip, J. Yáñez, M. C. Rodicio and R. Anadón (2002) Early development of the retina and pineal complex in the sea lamprey: Comparative immunocytochemical study. J. Comp. Neurol. 442, 250265.
  • 55
    Ostholm, T., E. Brannas and T. Van Veen (1987) The pineal organ is the first differentiated light receptor in the embryonic salmon, Salmo salar L. Cell Tissue Res. 249, 641646.
  • 56
    Forsell, J., B. Holmqvist, J. V. Helvik and P. Ekstrom (1997) Role of the pineal organ in the photoregulated hatching of the Atlantic halibut. Int. J. Dev. Biol. 41, 591595.
  • 57
    Nishida, H. (1987) Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. Dev. Biol. 121, 526541.
  • 58
    Eagleson, G. W. and W. A. Harris (1990) Mapping of the presumptive brain regions in the neural plate of Xenopus laevis. J. Neurobiol. 21, 427440.