Energy Transfer from Chemically Attached Rhodamine 101 to Adsorbed Methylene Blue on Microcrystalline Cellulose Particles

Authors


  • This paper is part of a symposium-in-print dedicated to Professor Eduardo A. Lissi on the occasion of his 70th birthday.

*email: esr@qi.fcen.uba.ar (Enrique San Román)

Abstract

Rhodamine 101 (R101) was chemically attached onto microcrystalline cellulose and methylene blue (MB) was adsorbed to a sample bearing nearby 6 × 10−7 mol R101 (g cellulose)−1. The system was studied by reflectance and emission spectroscopy in the solid state. R101 shows no aggregation in these conditions and, while pure MB builds up dimers on cellulose even at 2 × 10−8 mol g−1, in the presence of R101 no evidence on selfaggregation or heteroaggregation is found up to around 10−6 mol g−1. No exciplex formation is found as well. The overall fluorescence quantum yield measured on thick layers, once re-absorption effects are accounted for, amounts to 0.80 ± 0.07 for pure R101 and decreases steadily on increasing the concentration of MB. Results demonstrate the occurrence of radiative and nonradiative singlet energy transfer from R101 to MB. For thick layers of particles, the combined effect of both kinds of energy transfer amounts to nearly 80% at the highest acceptor concentration, while nonradiative transfer reaches 60% both for thin and optically thick layers. The dependence of nonradiative energy transfer efficiencies on the acceptor concentration is analyzed and the origin of departures from Förster behavior at low acceptor concentration is discussed.

Ancillary