Get access
Advertisement

Photosensitizing Potential of Ciprofloxacin at Ambient Level of UV Radiation

Authors


*email: rsray2001@rediffmail.com (Ratan Singh Ray)

Abstract

Ciprofloxacin is a widely used fluoroquinolone drug with broad spectrum antibacterial activities. Clinical experience has shown incidences of adverse effects related to skin, hepatic, central nervous system, gastrointestinal and phototoxicity. India is a tropical country and sunlight is abundant throughout the day. In this scenario exposure to ambient levels of ultraviolet radiation (UV-R) in sunlight may lead to harmful effects in ciprofloxacin users. Phototoxicity assessment of ciprofloxacin was studied by two mouse fibroblast cell lines L-929 and NIH-3T3. Generation of reactive oxygen species (ROS) like singlet oxygen (1O2), superoxide anion radical (O2ḃ−) and hydroxyl radical (OH) was studied under the exposure of ambient intensities of UV-A (1.14, 1.6 and 2.2 mW cm−2), UV-B (0.6, 0.9 and 1.2 mW cm−2) and sunlight (60 min). The drug was generating 1O2, O2ḃ− and OH in a concentration and dose-dependent manner. Sodium azide (NaN3) and 1,4-diazabicyclo 2-2-2-octane (DABCO) inhibited the generation of 1O2. Superoxide dismutase (SOD) inhibited 90–95% O2ḃ− generation. The drug (5–40 μg mL−1) was responsible for linoleic acid peroxidation. Quenching study of linoleic acid peroxidation with SOD (25 and 50 U mL−1) confirms the involvement of ROS in drug-induced lipid peroxidation. The generation of OH radical was further confirmed by using specific quenchers of OH such as mannitol (0.5 m) and sodium benzoate (0.5 m). 2′-deoxyguanosine (2′-dGuO) assay and linoleic acid peroxidation showed that ROS were mainly responsible for ciprofloxacin-sensitized photo-degradation of guanine base. L-929 cell line showed 29%, 34% and 54% reduced cell viability at higher drug concentration (300 μg mL−1) under UV-A, UV-B and sunlight, respectively. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay in NIH-3T3 cell line at higher drug concentration (300 μg mL−1) showed a decrease in cell viability by 54%, 56% and 59% under UV-A, UV-B and sunlight, respectively. Results of neutral red uptake assay (NRU) in L-929 cell line were in accordance with MTT assay. The NIH-3T3 cell line showed a higher photosensitizing potential than L-929. The phototoxicity end point shows a time- and concentration-dependent statistically significant (P < 0.001) damage. Ciprofloxacin produced ROS by Type I and Type II photodynamic reactions, interacted with nucleic acid moiety and inhibited cell viability. Further, UV-induced photo-peroxidation of linoleic acid accorded the involvement of ROS in the manifestation of drug phototoxicity. Appearance of ciprofloxacin-induced phototoxicity at the ambient level of sunlight is a real risk for the people of India and for those of other tropical countries. We suggest that sunlight exposure should be avoided (especially peak hours) during ciprofloxacin treatment.

Get access to the full text of this article

Ancillary