SEARCH

SEARCH BY CITATION

References

  • 1
    Scheubel RJ, Zorn H, Silber RE et al. Age-dependent depression in circulating endothelial progenitor cells inpatients undergoing coronary artery bypass grafting. J Am Coll Cardiol 2003; 42:20732080.
  • 2
    Vasa M, Fichtlscherer S, Aicher A et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 2001; 89:E1E7.
  • 3
    Eizawa T, Ikeda U, Murakami Y et al. Decrease in circulating endothelial progenitor cells in patients with stable coronary artery disease. Heart 2004; 90:685686.
  • 4
    Hill JM, Zalos G, Halcox JP et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003; 348:593600.
  • 5
    Heeschen C, Lehmann R, Honold J et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 2004; 109:16151622.
  • 6
    Tepper OM, Galiano RD, Capla JM et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 2002; 106:27812786.
  • 7
    Murohara T, Ikeda H, Duan J et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 2000; 105:15271536.
  • 8
    Vendrame M, Cassady J, Newcomb J et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke 2004; 35:23902395.
  • 9
    Willing AE, Lixian J, Milliken M et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res 2003; 73:296307.
  • 10
    Borlongan CV, Hadman M, Davis Sanberg C et al. Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 2004; 35:23852389.
  • 11
    Taguchi A, Soma T, Tanaka H et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 2004; 114:330338.
  • 12
    Lewis ID, Verfaillie CM. Multi-lineage expansion potential of primitive hematopoietic progenitors: Superiority of umbilical cord blood compared to mobilized peripheral blood. Exp Hematol 2000; 28:10871095.
  • 13
    Nieda M, Nicol A, Denning-Kendall P et al. Endothelial cell precursors are normal components of human umbilical cord blood. Br J Haematol 1997; 98:775777.
  • 14
    Yeh ET, Zhang S, Wu HD et al. Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 2003; 108:20702073.
  • 15
    Kocher AA, Schuster MD, Szabolcs MJ et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001; 7:430436.
  • 16
    Shpall EJ, Quinones R, Giller R et al. Transplantation of ex vivo expanded cord blood. Biol Blood Marrow Transplant 2002; 8:368376.
  • 17
    Murohara T. Therapeutic vasculogenesis using human cord blood-derived endothelial progenitors. Trends Cardiovasc Med 2001; 11:303307.
  • 18
    Etzion S, Battler A, Barbash IM et al. Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J Mol Cell Cardiol 2001; 33:13211330.
  • 19
    Barbash IM, Chouraqui P, Baron J et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: Feasibility, cell migration, and body distribution. Circulation 2003; 108:863868.
  • 20
    Schuster MD, Kocher AA, Seki T et al. Myocardial neovascularization by bone marrow angioblasts results in cardiomyocyte regeneration. Am J Physiol Heart Circ Physiol 2004; 287:H525H532.
  • 21
    Ando H, Kubin T, Schaper W et al. Cardiac microvascular endothelial cells express alpha-smooth muscle actin and show low NOS III activity. Am J Physiol Heart Circ Physiol 1999; 276:H1755H1768.
  • 22
    Jaroscak J, Goltry K, Smith A et al. Augmentation of umbilical cord blood (UCB) transplantation with ex vivo-expanded UCB cells: Results of a phase 1 trial using the AastromReplicell System. Blood 2003; 101:50615067.
  • 23
    Pesce M, Orlandi A, Iachininoto MG et al. Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res 2003;93:e51e62.
  • 24
    Kogler G, Sensken S, Airey JA et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004; 200:123135.
  • 25
    Tsafrir A, Brautbar C, Nagler A et al. Alloreactivity of umbilical cord blood mononuclear cells: Specific hyporesponse to noninherited maternal antigens. Hum Immunol 2000; 61:548554.
  • 26
    Cohen Y, Nagler A. Hematopoietic stem-cell transplantation using umbilical-cord blood. Leuk Lymphoma 2003; 44:12871299.
  • 27
    Henning RM, Abu-Ali H, Balis JU et al. Human umbilical cord blood mononuclear cells for the treatment of acute myocardial infarction. Cell Transplant 2004; 13:729739.
  • 28
    Hirata Y, Sata M, Motomura N et al. Human umbilical cord blood cells improve cardiac function after myocardial infarction. Biochem Biophys Res Commun 2005; 327:609614.
  • 29
    Ma N, Stamm C, Kaminski A et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res 2005; 66:4554.
  • 30
    Balsam LB, Wagers AJ, Christensen JL et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004; 428:668673.
  • 31
    Agbulut O, Vandervelde S, Al Attar N et al. Comparison of human skeletal myoblasts and bone marrow-derived CD133+ progenitors for the repair of infarcted myocardium. J Am Coll Cardiol 2004; 44:458463.
  • 32
    Duffield JS, Park KM, Hsiao LL et al. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 2005; 115:17431755.
  • 33
    Togel F, Hu Z, Weiss K et al. Amelioration of acute renal failure by stem cell therapy—paracrine secretion versus transdifferentiation into resident cells: Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. J Am Soc Nephrol 2005; 16:11531163.
  • 34
    Muller-Ehmsen J, Peterson KL, Kedes L et al. Rebuilding a damaged heart: Long-term survival of transplanted neonatal rat cardiomyocytes after myocardial infarction and effect on cardiac function. Circulation 2002; 105:17201726.
  • 35
    Yao M, Dieterle T, Hale SL et al. Long-term outcome of fetal cell transplantation on postinfarction ventricular remodeling and function. J Mol Cell Cardiol 2003; 35:661670.
  • 36
    Migrino RQ, Young JB, Ellis SG et al. End-systolic volume index at 90 to 180 minutes into reperfusion therapy for acute myocardial infarction is a strong predictor of early and late mortality. The Global Utilization of Streptokinase and t-PA for Occluded Coronary Arteries (GUSTO)-I Angiographic Investigators. Circulation 1997; 96:116121.
  • 37
    Zhang S, Wang D, Estrov Z et al. Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Circulation 2004; 110:38033807.
  • 38
    Kajstura J, Rota M, Whang B et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 2004; 96:127137.
  • 39
    Reffelmann T, Dow JS, Dai W et al. Transplantation of neonatal cardiomyocytes after permanent coronary artery occlusion increases regional blood flow of infarcted myocardium. J Mol Cell Cardiol 2003; 35:607613.
  • 40
    Askari AT, Unzek S, Popovic ZB et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003; 362:697703.
  • 41
    Kahn J, Byk T, Jansson-Sjostrand L et al. Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood 2004; 103:29422949.
  • 42
    Ma J, Ge J, Zhang S et al. Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardiol 2005; 100:217223.
  • 43
    Abbott JD, Huang Y, Liu D et al. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 2004; 110:33003305.
  • 44
    Vandervelde S, van Luyn MJ, Tio RA et al. Signaling factors in stem cell-mediated repair of infarcted myocardium. J Mol Cell Cardiol 2005; 39:363376.
  • 45
    Aicher A, Brenner W, Zuhayra M et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 2003; 107:21342139.
  • 46
    Devine SM, Cobbs C, Jennings M et al. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 2003; 101:29993001.
  • 47
    Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood 2005; 106:19011910.
  • 48
    Hofmann M, Wollert KC, Meyer GP et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 2005; 111:21982202.
  • 49
    Dai W, Hale SL, Martin BJ et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium. Short- and long-term effects. Circulation 2005; 112:214223.