• Cell adhesion molecules;
  • Cell surface markers;
  • Chondroitin sulfate;
  • Differentiation;
  • Embryonic stem cell Glycosaminoglycan;
  • Heparin;
  • Neural differentiation


Embryonic stem (ES) cells can be cultured in conditions that either maintain pluripotency or allow differentiation to the three embryonic germ layers. Heparan sulfate (HS), a highly polymorphic glycosaminoglycan, is a critical cell surface coreceptor in embryogenesis, and in this paper we describe its structural transition from an unusually low-sulfated variant in ES cells to a more highly sulfated form in fluorescence-activated cell sorting-purified neural progenitor cells. The characteristic domain structure of HS was retained during this transformation. However, qualitative variations in surface sulfation patterns between ES and differentiated cells were revealed using HS epitope-specific antibodies and the HS-binding growth factor fibroblast growth factor 2 (FGF-2). Expression profiles of the HS modification enzymes indicated that both “early” (N-sulfotransferases) and “late” (6O- and 3O-sulfotransferases) sulfotransferases contributed to the alterations in sulfation patterning. An HS-null ES line was used to demonstrate the necessity for HS in neural differentiation. HS is a coreceptor for many of the protein effectors implicated in pluripotency and differentiation (e.g., members of the FGF family, bone morphogenic proteins, and fibronectin). We suggest that the stage-specific activities of these proteins are finely regulated by dynamic changes in sulfation motifs in HS chains.

Disclosure of potential conflicts of interest is found at the end of this article.