Matrix Metalloprotease Activity Is an Essential Link Between Mechanical Stimulus and Mesenchymal Stem Cell Behavior

Authors

  • Grit Kasper Ph.D.,

    Corresponding author
    1. Musculoskeletal Research Center Berlin, Charité - Universitätsmedizin, Berlin, Germany
    2. Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin, Berlin, Germany
    • Musculoskeletal Research Center Berlin, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany. Telephone: ++49-30-450 615116; Fax: ++49-30-450 559969
    Search for more papers by this author
  • Juliane D. Glaeser,

    1. Musculoskeletal Research Center Berlin, Charité - Universitätsmedizin, Berlin, Germany
    2. Free University Berlin, Department of Biology, Chemistry, Pharmacy, Berlin, Germany
    Search for more papers by this author
  • Sven Geissler,

    1. Musculoskeletal Research Center Berlin, Charité - Universitätsmedizin, Berlin, Germany
    2. Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin, Berlin, Germany
    Search for more papers by this author
  • Andrea Ode,

    1. Musculoskeletal Research Center Berlin, Charité - Universitätsmedizin, Berlin, Germany
    2. Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin, Berlin, Germany
    Search for more papers by this author
  • Jens Tuischer,

    1. Musculoskeletal Research Center Berlin, Charité - Universitätsmedizin, Berlin, Germany
    Search for more papers by this author
  • Georg Matziolis,

    1. Musculoskeletal Research Center Berlin, Charité - Universitätsmedizin, Berlin, Germany
    Search for more papers by this author
  • Carsten Perka,

    1. Musculoskeletal Research Center Berlin, Charité - Universitätsmedizin, Berlin, Germany
    Search for more papers by this author
  • Georg N. Duda

    1. Musculoskeletal Research Center Berlin, Charité - Universitätsmedizin, Berlin, Germany
    2. Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin, Berlin, Germany
    Search for more papers by this author

Abstract

Progenitor cells are involved in the regeneration of the musculoskeletal system, which is known to be influenced by mechanical boundary conditions. Furthermore, matrix metalloproteases (MMPs) and tissue-specific inhibitors of metalloproteases (TIMPs) are crucial for matrix remodelling processes that occur during regeneration of bone and other tissues. This study has therefore investigated whether MMP activity affects mesenchymal stem cell (MSC) behavior and how MMP activity is influenced by the mechanical stimulation of these cells. Broad spectrum inhibition of MMPs altered the migration, proliferation, and osteogenic differentiation of MSCs. Expression analysis detected MMP-2, -3, -10, -11, -13, and -14, as well as TIMP-2, in MSCs at the mRNA and protein levels. Mechanical stimulation of MSCs led to an upregulation of their extracellular gelatinolytic activity, which was consistent with the increased protein levels seen for MMP-2, -3, -13, and TIMP-2. However, mRNA expression levels of MMPs/TIMPs showed no changes in response to mechanical stimulation, indicating an involvement of post-transcriptional regulatory processes such as alterations in MMP secretion or activation. One potential regulatory molecule might be the furin protease. Specific inhibition of MMP-2, -3, and -13 showed MMP-13 to be involved in osteogenic differentiation. The results of this study suggest that MSC function is controlled by MMP activity, which in turn is regulated by mechanical stimulation of cells. Thus, MMP/TIMP balance seems to play an essential role in transferring mechanical signals into MSC function.

Disclosure of potential conflicts of interest is found at the end of this article.

Ancillary