SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Abdel-Latif A, Bolli R, Tleyjeh IM et al. Adult bone marrow-derived cells for cardiac repair: A systematic review and meta-analysis. Arch Intern Med 2007; 167: 989997.
  • 2
    Erbs S, Linke A, Schachinger V et al. Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: The Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial. Circulation 2007; 116: 366374.
  • 3
    Lipinski MJ, Biondi-Zoccai GG, Abbate A et al. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: A collaborative systematic review and meta–analysis of controlled clinical trials. J Am Coll Cardiol 2007; 50: 17611767.
  • 4
    Cao Y, Sun Z, Liao L et al. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 2005; 332: 370379.
  • 5
    Planat-Benard V, Silvestre JS, Cousin B et al. Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives. Circulation 2004; 109: 656663.
  • 6
    Miranville A, Heeschen C, Sengenes C et al. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 2004; 110: 349355.
  • 7
    Planat-Bénard V, Menard C, Andre M et al. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 2004; 94: 223229.
  • 8
    Song YH, Gehmert S, Sadat S et al. VEGF is critical for spontaneous differentiation of stem cells into cardiomyocytes. Biochem Biophys Res Commun 2007; 354: 9991003.
  • 9
    Strem BM, Zhu M, Alfonso Z et al. Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury. Cytotherapy 2005; 7: 282291.
  • 10
    Cai L, Johnstone BH, Cook TG et al. Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization. Stem Cells 2007; 25: 32343243.
  • 11
    Nakagami H, Morishita R, Maeda K et al. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb 2006; 13: 7781.
  • 12
    Rehman J, Traktuev D, Li J et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004; 109: 12921298.
  • 13
    Sadat S, Gehmert S, Song YH et al. The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochem Biophys Res Commun 2007; 363: 674679.
  • 14
    Davani S, Marandin A, Mersin N et al. Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation 2003; 108( suppl 1): II253II258.
  • 15
    Min JY, Yang Y, Sullivan MF et al. Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J Thorac Cardiovasc Surg 2003; 125: 361369.
  • 16
    Hsieh PC, Davis ME, Gannon J et al. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J Clin Invest 2006; 116: 237248.
  • 17
    Cao JM, Chen LS, KenKnight BH et al. Nerve sprouting and sudden cardiac death. Circ Res 2000; 86: 816821.
  • 18
    Zhou S, Cao JM, Tebb ZD et al. Modulation of QT interval by cardiac sympathetic nerve sprouting and the mechanisms of ventricular arrhythmia in a canine model of sudden cardiac death. J Cardiovasc Electrophysiol 2001; 12: 10681073.
  • 19
    Nakagami H, Maeda K, Morishita R et al. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol 2005; 25: 25422547.
  • 20
    Barber MJ, Mueller TM, Davies BG et al. Interruption of sympathetic and vagal-mediated afferent responses by transmural myocardial infarction. Circulation 1985; 72: 623631.
  • 21
    Nori SL, Gaudino M, Alessandrini F et al. Immunohistochemical evidence for sympathetic denervation and reinnervation after necrotic injury in rat myocardium. Cell Mol Biol 1995; 41: 799807.
  • 22
    Vracko R, Thorning D, Frederickson RG. Fate of nerve fibers in necrotic, healing, and healed rat myocardium. Lab Invest 1990; 63: 490501.
  • 23
    Vracko R, Thorning D, Frederickson RG. Nerve fibers in human myocardial scars. Hum Pathol 1991; 22: 138146.
  • 24
    Kristensen GB, Abeler VM, Risberg B et al. Tumor size, depth of invasion, and grading of the invasive tumor front are the main prognostic factors in early squamous cell cervical carcinoma. Gynecol Oncol 1999; 74: 245251.
  • 25
    Assmus B, Schachinger V, Teupe C et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 2002; 106: 30093017.
  • 26
    Duckers HJ, Serruys PW. First-in-man experience of adipose-derived stem cell transplantation in the treatment of patients with acute myocardial infarction (APOLLO). Stem Cells 2007; 25: 32743278.
  • 27
    Meyer GP, Wollert KC, Lotz J et al. Intracoronary bone marrow cell transfer after myocardial infarction: Eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 2006; 113: 12871294.
  • 28
    Kalka C, Masuda H, Takahashi T et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 2000; 97: 34223427.
  • 29
    Kang HJ, Kim HS, Zhang SY et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: The MAGIC cell randomised clinical trial. Lancet 2004; 363: 751756.
  • 30
    Beltrami AP, Barlucchi L, Torella D et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003; 114: 763776.
  • 31
    Bussolino F, Di Renzo MF, Ziche M et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 1992; 119: 629641.
  • 32
    Morimoto A, Okamura K, Hamanaka R et al. Hepatocyte growth factor modulates migration and proliferation of human microvascular endothelial cells in culture. Biochem Biophys Res Commun 1991; 179: 10421049.
  • 33
    Linke A, Muller P, Nurzynska D et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci U S A 2005; 102: 89668971.
  • 34
    Ueda H, Nakamura T, Matsumoto K et al. A potential cardioprotective role of hepatocyte growth factor in myocardial infarction in rats. Cardiovasc Res 2001; 51: 4150.
  • 35
    Urbanek K, Rota M, Cascapera S et al. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 2005; 97: 663673.
  • 36
    Narula J, Haider N, Virmani R et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996; 335: 11821189.
  • 37
    Saraste A, Pulkki K, Kallajoki M et al. Apoptosis in human acute myocardial infarction. Circulation 1997; 95: 320323.
  • 38
    Hartikainen J, Kuikka J, Mantysaari M et al. Sympathetic reinnervation after acute myocardial infarction. Am J Cardiol 1996; 77: 59.
  • 39
    Pak HN, Qayyum M, Kim DT et al. Mesenchymal stem cell injection induces cardiac nerve sprouting and increased tenascin expression in a Swine model of myocardial infarction. J Cardiovasc Electrophysiol 2003; 14: 841848.
  • 40
    Zhou S, Chen LS, Miyauchi Y et al. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res 2004; 95: 7683.
  • 41
    Chang CM, Wu TJ, Zhou S et al. Nerve sprouting and sympathetic hyperinnervation in a canine model of atrial fibrillation produced by prolonged right atrial pacing. Circulation 2001; 103: 2225.
  • 42
    Burke MN, McGinn AL, Homans DC et al. Evidence for functional sympathetic reinnervation of left ventricle and coronary arteries after orthotopic cardiac transplantation in humans. Circulation 1995; 91: 7278.
  • 43
    Kim DT, Luthringer DJ, Lai AC et al. Sympathetic nerve sprouting after orthotopic heart transplantation. J Heart Lung Transplant 2004; 23: 13491358.
  • 44
    Parry DS, Foulsham L, Jenkins G et al. Incidence and functional significance of sympathetic reinnervation after cardiac transplantation. Transplant Proc 1997; 29: 569570.
  • 45
    Bengel FM, Ueberfuhr P, Schiepel N et al. Myocardial efficiency and sympathetic reinnervation after orthotopic heart transplantation: A noninvasive study with positron emission tomography. Circulation 2001; 103: 18811886.
  • 46
    Cao JM, Fishbein MC, Han JB et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 2000; 101: 19601969.
  • 47
    Fotuhi P, Song YH, Alt E. Electrophysiological consequence of adipose-derived stem cell transplantation in infarcted porcine myocardium. Europace 2007; 9: 12181221.
  • 48
    Li B, Zeng Q, Wang H et al. Adipose tissue stromal cells transplantation in rats of acute myocardial infarction. Coron Artery Dis 2007; 18: 221227.