WETLANDS AS AN ALTERNATIVE STABLE STATE IN DESERT STREAMS

Authors

  • James B. Heffernan

    1. School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4601 USA
    Search for more papers by this author
    •  Present address: School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611-0410 USA. E-mail: j.heffernan@ufl.edu


  • Corresponding Editor: C. R. Hupp.

Abstract

Historically, desert drainages of the American southwest supported productive riverine wetlands (ciénegas). Region-wide erosion of ciénegas during the late 19th and early 20th century dramatically reduced the abundance of these ecosystems, but recent reestablishment of wetlands in Sycamore Creek, Arizona, USA, provides an opportunity to evaluate the mechanisms underlying wetland development. A simple model demonstrates that density-dependent stabilization of channel substrate by vegetation results in the existence of alternative stable states in desert streams. A two-year (October 2004–September 2006) field survey of herbaceous cover and biomass at 26 sites located along Sycamore Creek is used to test the underlying assumption of this model that vegetation cover loss during floods is density dependent, as well as the prediction that the distribution of vegetation abundance should shift toward bimodality in response to floods. Observations of nonlinear, negative relationships between herbaceous biomass prior to flood events and the proportion of persistent vegetation cover were consistent with the alternative stable state model. In further support of the alternative-state hypothesis, vegetation cover diverged from an approximately normal distribution toward a distinctly bimodal distribution during the monsoon flood season of 2006. These results represent the first empirically supported example of alternative-state behavior in stream ecosystems. Identification of alternative stable states in desert streams supports recent hypotheses concerning the importance of strong abiotic-disturbance regimes and biogeomorphic mechanisms in multiple-state ecosystems.

Ancillary