Contrasting patterns of transgenerational plasticity in ecologically distinct congeners



Stressful parental environments can influence offspring size and development either adaptively or maladaptively, yet little is known about species' differences in this complex aspect of phenotypic plasticity. We performed a reciprocal split-brood experiment to compare transgenerational plasticity in response to drought stress in two closely related annual plant species. We raised inbred replicate parent plants of eight genotypes per species in dry vs. moist soil to generate offspring of each genetic line that differed only in parental environment, then monitored seedling development in both dry and moist conditions. Individuals of the two species expressed contrasting patterns of transgenerational plasticity for traits important to seedling drought tolerance. In Polygonum persicaria, a weedy generalist found in moist, dry, and variably dry sites, drought-stressed plants produced offspring with longer and more rapidly extending root systems and greater biomass when growing in dry soil. In contrast, in P. hydropiper, a non-weedy congener restricted to moist habitats, the offspring of drought-stressed parents had reduced root system development and seedling biomass in dry soil. In P. persicaria, transgenerational and immediate adaptive plasticity combined to produce drought-adapted seedling phenotypes. These results make clear that characteristic patterns of transgenerational plasticity can contribute to ecological diversity among species.