Mycorrhizal networks counteract competitive effects of canopy trees on seedling survival


  • Corresponding Editor: J. N. Klironomos.


The dynamics of forest ecosystems depend largely on the survival of seedlings in their understories, but seedling survival is known to be limited by preemption of light and soil resources by overstory trees. It has been hypothesized that “common mycorrhizal networks,” wherein roots of seedlings are linked to overstory trees by symbiotic mycorrhizal fungi, offset some or all of the negative effects of trees on seedlings. Here we report the results of an unambiguous experimental test of this hypothesis in a monodominant Pinus radiata forest. We also tested the hypothesis that adaptive differentiation among plant populations causes local plant genotypes to respond more positively to mycorrhizal networks than nonlocal plant genotypes. Our results demonstrate large positive effects of overstory mycorrhizal networks on seedling survival, along with simultaneous negative effects of tree roots, regardless of whether plant genotypes were locally derived. Physiological and leaf-chemistry measurements suggest that seedlings connected to common mycorrhizal networks benefited from increased access to soil water. The similar magnitude of the positive and negative overstory effects on seedlings and the ubiquity of mycorrhizal networks in forests suggest that mycorrhizal networks fundamentally influence the demographic and community dynamics of forest trees.