Twelve years of succession on sandy substrates in a post-mining landscape: a Markov chain analysis


  • Corresponding Editor: Y. Luo.


Knowledge of succession rates and pathways is crucial for devising restoration strategies for highly disturbed ecosystems such as surface-mined land. As these processes have often only been described in qualitative terms, we used Markov models to quantify transitions between successional stages. However, Markov models are often considered not attractive for some reasons, such as model assumptions (e.g., stationarity in space and time, or the high expenditure of time required to estimate successional transitions in the field). Here we present a solution for converting multivariate ecological time series into transition matrices and demonstrate the applicability of this approach for a data set that resulted from monitoring the succession of sandy dry grassland in a post-mining landscape. We analyzed five transition matrices, four one-step matrices referring to specific periods of transition (1995–1998, 1998–2001, 2001–2004, 2004–2007), and one matrix for the whole study period (stationary model, 1995–2007). Finally, the stationary model was enhanced to a partly time-variable model. Applying the stationary and the time-variable models, we started a prediction well outside our calibration period, beginning with 100% bare soil in 1974 as the known start of the succession, and generated the coverage of 12 predefined vegetation types in three-year intervals. Transitions among vegetation types changed significantly in space and over time. While the probability of colonization was almost constant over time, the replacement rate tended to increase, indicating that the speed of succession accelerated with time or fluctuations became stronger. The predictions of both models agreed surprisingly well with the vegetation data observed more than two decades later. This shows that our dry grassland succession in a post-mining landscape can be adequately described by comparably simple types of Markov models, although some model assumptions have not been fulfilled and within-plot transitions have not been observed with point exactness. The major achievement of our proposed way to convert vegetation time series into transition matrices is the estimation of probability of events—a strength not provided by other frequently used statistical methods in vegetation science.