MODELING SPECIES–HABITAT RELATIONSHIPS WITH SPATIALLY AUTOCORRELATED OBSERVATION DATA

Authors


  • Corresponding Editor: N. T. Hobbs.

Abstract

Spatial autocorrelation in wildlife observation data arises when extrinsic environmental processes and patterns that influence the spatial distribution of wildlife are themselves spatially structured, or when species are subject to intrinsic population processes, causing contagion or dispersion effects. Territoriality, Allee effects, dispersal limitations, and social clustering are examples of intrinsic processes. Both forms of autocorrelation can violate the assumptions of generalized linear regression models, resulting in biased estimation of model coefficients and diminished predictive performance. Such consequences may be avoided for extrinsic autocorrelation when autocorrelated environmental variables are available for use as model covariates, whereas intrinsic spatial autocorrelation requires an alternative modeling approach. The autologistic model provides an approach suited to the binary observations often obtained in wildlife surveys, but its performance has not been tested across widely varying sampling intensities or strengths of intrinsic spatial structure.

Here we use simulated data to test the autologistic model under a range of sampling conditions. The autologistic model obtains better fits and substantially better predictive performance than the standard logistic regression model over the full range of sampling designs and intensities tested. We provide a simple Bayesian implementation of the autologistic model, which until now has not been achieved with standard statistical software alone. A step-by-step procedure is given for characterizing and modeling spatial autocorrelation in binary observation data, along with computer code for fitting autologistic models in WinBUGS, a freeware Bayesian analysis package. This approach avoids normal approximations to the pseudo-likelihood, in contrast to previous Bayesian applications of the autologistic model. We provide a sample application of the autologistic model, fitted to survey data for a gliding marsupial in southeastern Australia.

Ancillary