Lake to land subsidies: Experimental addition of aquatic insects increases terrestrial arthropod densities


  • Corresponding Editor: E. T. Borer.


Aquatic insects are a common and important subsidy to terrestrial systems, yet little is known about how these inputs affect terrestrial food webs, especially around lakes. Mývatn, a lake in northern Iceland, has extraordinary midge (Chironomidae) emergences that result in large inputs of biomass and nutrients to terrestrial arthropod communities. We simulated this lake-to-land resource pulse by collecting midges from Mývatn and spreading their dried carcasses on 1-m2 plots at a nearby site that receives very little midge deposition. We hypothesized a positive bottom-up response of detritivores that would be transmitted to their predators and would persist into the following year. We sampled the arthropod community once per month for two consecutive summers. Midge addition resulted in significantly different arthropod communities and increased densities of some taxa in both years. Detritivores, specifically Diptera larvae, Collembola, and Acari increased in midge-addition plots, and so did some predators and parasitoids. Arthropod densities were still elevated a year after midge addition, and two years of midge addition further increased the density of higher-order consumers (e.g., Coleoptera and Hymenoptera). Midge addition increased arthropod biomass by 68% after one year and 108% after two years. By manipulating the nutrient pulse delivered by midges we were able to elucidate food web consequences of midge deposition and spatial and temporal dynamics that are difficult to determine based on comparative approaches alone. Resources cross ecosystem boundaries and are assimilated over time because of life-history strategies that connect aquatic and terrestrial food webs and these systems cannot be fully understood in isolation from each other.