Habitat patch shape, not corridors, determines herbivory and fruit production of an annual plant

Authors


  • Corresponding Editor: E. E. Crone.

Abstract

Habitat corridors confer many conservation benefits by increasing movement of organisms between habitat patches, but the benefits for some species may exact costs for others. For example, corridors may increase the abundance of consumers in a habitat to the detriment of the species they consume. In this study we assessed the impact of corridors on insect herbivory of a native plant, Solanum americanum, in large-scale, experimentally fragmented landscapes. We quantified leaf herbivory and assessed fruit production as a proxy for plant fitness. We also conducted field surveys of grasshoppers (Orthoptera), a group of abundant, generalist herbivores that feed on S. americanum, and we used exclosure cages to explicitly link grasshopper herbivory to fruit production of individual S. americanum. The presence of corridors did not increase herbivory or decrease plant fruit production. Likewise, corridors did not increase grasshopper abundance. Instead, patches in our landscapes with the least amount of edge habitat and the greatest amount of warmer “core” area had the highest levels of herbivory, the largest cost to plant fruit production as a result of herbivory, and the most grasshoppers. Thus habitat quality, governed by patch shape, can be more important than connectivity for determining levels of herbivory and the impact of herbivory on plant fitness in fragmented landscapes.

Ancillary