Derivation of a chronic site-specific water quality standard for selenium in the Great Salt Lake, Utah, USA



The purpose of this study was to develop a site-specific water quality standard for selenium in the Great Salt Lake, Utah, USA. The study examined the bioavailability and toxicity of selenium, as selenate, to biota resident to the Great Salt Lake and the potential for dietary selenium exposure to aquatic dependent birds that might consume resident biota. Because of its high salinity, the lake has limited biological diversity with bacteria, algae, diatoms, brine shrimp, and brine flies being the only organisms present in the main (hypersaline) portions of the lake. To evaluate their sensitivity to selenium, a series of acute and chronic toxicity studies were conducted on brine shrimp (Artemia franiciscana), brine fly (Ephydra cinerea), and a hypersaline alga (Dunaliella viridis). The resulting acute and chronic toxicity data indicated that resident species are more selenium tolerant than many freshwater species. Because sulfate is known to reduce selenate bioavailability, this selenium tolerance is thought to result in part from the lake's high ambient sulfate concentrations (>5,800 mg/L). The acute and chronic test results were compared to selenium concentrations expected to occur in a mining effluent discharge located at the south end of the lake. Based on these comparisons, no appreciable risks to resident aquatic biota were projected. Field and laboratory data collected on selenium bioaccumulation in brine shrimp demonstrated a linear relationship between water and tissue selenium concentrations. Applying a dietary selenium threshold of 5 mg/kg dry weight for aquatic birds to this relationship resulted in an estimate of 27 μg/L Se in water as a safe concentration for this exposure pathway and an appropriate chronic site-specific water quality standard. Consequently, protection of aquatic birds represents the driving factor in determining a site-specific water quality standard for selenium.