• Risk assessment;
  • Species sensitivity distribution;
  • Weighted bootstrapping;
  • Variability


Species sensitivity distribution (SSD) methodology currently is used in environmental risk assessment to determine the predicted no-effect concentration (PNEC) of a substance in cases where a sufficient number of chronic ecotoxicological tests have been carried out on the substance, covering, for the aquatic environment with which we are concerned, three taxonomic groups: algae, invertebrates, and vertebrates. In particular, SSD methodology enables calculation of a hazardous concentration that is assumed to protect 95% of species (HC5). This approach is based on the hypothesis that the species for which results of ecotoxicological tests are known are representative, in terms of sensitivity, of the totality of the species in the environment, which raises a number of questions, both theoretical and practical. In this study, we compared various methods of constructing a species sensitivity- weighted distribution (SSWD). Each method is characterized by a different way of taking into account intraspecies variation and proportions of taxonomic groups (vertebrates, invertebrates, and algae), as well as by the statistical method of calculation of the HC5 and its confidence interval. Those methods are tested on 15 substances by using chronic no-observed-effect concentration data available in the literature. The choice of data (intraspecies variation and proportions between taxonomic groups) was found to have more effect on the value of the HC5 than the statistical method used to construct the distribution. The weight of each taxonomic group is the most important parameter for the result of the SSWD and letting literature references decide which proportions of data are used to construct it is not satisfactory.