SEARCH

SEARCH BY CITATION

Keywords:

  • Polycyclic aromatic hydrocarbon;
  • Benzo[a]pyrene;
  • Nonaqueous-phase liquid;
  • Bioremediation;
  • Radiorespirometry

Abstract

The presence of multicomponent nonaqueous-phase liquids (NAPLs) on contaminated sites critically alters the biodegradation susceptibility of many target pollutants, including polycyclic aromatic hydrocarbons. This study investigated the effects of petroleum-derived multicomponent NAPLs on biodegradation of benzo[a]pyrene by a bacterial consortium in liquid culture. When high—boiling point diesel fuel distillate (HBD)-NAPL was added to liquid culture, the consortium initiated benzo[a]pyrene mineralization after a lag period of several days. This lag period was not observed in the mineralization of phenanthrene, anthracene, and chrysene by the same consortium with HBD. Nonaqueous-phase liquids added to cultures pregrown before experimentation largely affected the extent of benzo[a]pyrene mineralization and the duration of lag period in subsequent experiments, suggesting that NAPL presence was important for maintaining the efficiency of the mineralizing consortium. Experiments using further fractionated oil components suggested that stimulation of benzo[a]pyrene mineralization by NAPLs was fraction dependent; an alkylated aromatic fraction was more effective than aromatic and aliphatic fractions. The effect of NAPL on benzo[a]pyrene biodegradation was determined to be multimechanistic; that is, NAPL acted as a cosolvent for polycyclic aromatic hydrocarbon dissolution, as a substrate to induce cometabolic degradative pathways, and as an agent to formulate the effective microbial consortium. Data suggest that the third mechanism was of particular importance for rapid benzo[a]pyrene mineralization.