Polycyclic aromatic hydrocarbon levels in mussels from prince william sound, ALASKA, USA, document the return to baseline conditions

Authors


Abstract

Bioavailable hydrocarbons in the Exxon Valdez oil spill zone in Prince William Sound (PWS; AK, USA) shorelines were at or near background levels in 2002, as indicated by low concentrations of polycyclic aromatic hydrocarbons (PAHs) in mussels (Mytilus trossulus) collected from sites throughout PWS. Total PAH (TPAH) minus parent naphthalene concentrations in mussels collected in 1998 to 2002 from sites oiled in 1989 were at or near reference-site values. Both oiled and reference sites included locations associated with past human and industrial activity (HA). Inclusion of the unoiled HA sites in the range of reference sites that define prespill conditions is consistent with federal regulations. For the period from 1998 to 2002, the geometric mean of TPAH concentrations for 218 mussel samples collected from 72 sites, including four HA sites that had been heavily oiled in 1989, is 54 ng/g dry weight (range, 2–1,190 ng/g). The maximum mussel TPAH concentrations are equivalent to a weathered-oil exposure dose to intertidal foragers that is one to three orders of magnitude less than the doses shown to cause sublethal effects in surrogate species. The geometric mean of TPAH concentrations for mussel samples from 28 locations not oiled in 1989 and unaffected by human use (NHA sites) is 28 ng/g (range, 3–355 ng/g), whereas the geometric mean of TPAH concentrations for mussel samples from 14 locations not oiled in 1989 and affected by human use (HA sites) is 106 ng/g (range, 2–12,056 ng/g). The range of data for the unoiled HA and NHA sites defines the background of bioavailable PAHs to mussels on western PWS shorelines that would have prevailed if the oil spill had not occurred. The low PAH concentrations in mussels from sites known to have subsurface oil residues demonstrates the low bioavailability of these spill remnants and, thus, are a low additional risk to foraging wildlife. The present study shows continuous exposure from four- to six-ring PAHs originating at HA sites in western PWS. At low concentrations, these PAHs are known to cause adverse biological effects. However, in the context of PWS, oiled and HA sites represent a small percentage (∼0.1–0.2%) of the total PWS shoreline.

Ancillary