• Synthetic pyrethroids;
  • Cyhalothrin;
  • Estrogen receptor;
  • Endocrine disruption;
  • Gene expression


Synthetic pyrethroids are widely used in both agricultural and urban environments for insect control. Lambda-cyhalothrin (LCT) is one of the most common pyrethroids and is used mainly for controlling mosquitoes, fleas, cockroaches, flies, and ants around households. Previous studies have addressed the environmental behaviors and acute toxicities of LCT, but little is known about its chronic toxicity, such as estrogen-like activity. In the present study, the estrogenic potential of LCT was evaluated using the MCF-7 human breast carcinoma cell line. The in vitro E-screen assay showed that 10−7 M LCT could significantly promote MCF-7 cell proliferation, with a relative proliferative effect ratio of 45%. The cell proliferation induced by LCT could be blocked completely, however, by the addition of 10−9 M of the estrogen receptor (ER)-antagonist ICI 182,780. The semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) results showed that the Trefoil factor 1 (pS2) and progesterone receptor gene expression were up-regulated by 10−7 M LCT for 2- and 1.5-fold, respectively. On the other hand, RT-PCR, Western blot analysis, and immunofluorescent assay demonstrated that LCT significantly repressed the mRNA and protein expression levels of ERα and ERβ. These observations indicate that LCT possesses estrogenic properties and may function as a xenoestrogen, likely via a mechanism similar to that of 17β-estradiol. The endocrine-disruption potential of LCT should be considered when assessing the safety of this compound in sensitive environmental compartments.