SEARCH

SEARCH BY CITATION

Keywords:

  • Nanomaterials;
  • Aluminum;
  • Surface charge;
  • Particle size;
  • Characterization

Abstract

Nanoparticles are being used in broad range of applications; therefore, these materials probably will enter the environment during their life cycle. The objective of the present study is to identify changes in properties of nanoparticles released into the environment with a case study on aluminum nanoparticles. Aluminum nanoparticles commonly are used in energetic formulations and may be released into the environment during their handling and use. To evaluate the transport of aluminum nanoparticles, it is necessary not only to understand the properties of the aluminum in its initial state but also to determine how the nanoparticle properties will change when exposed to relevant environmental conditions. Transport measurements were conducted with a soil-column system that delivers a constant upflow of a suspension of nanoparticles to a soil column and monitors the concentration, size, agglomeration state, and charge of the particles in the eluent. The type of solution and surface functionalization had a marked effect on the charge, stability, and agglomeration state of the nanoparticles, which in turn impacted transport through the receiving matrix. Transport also is dependent on the size of the nanoparticles, although it is the agglomerate size, not the primary size, that is correlated with transportability. Electrostatically induced binding events of positively charged aluminum nanoparticles to the soil matrix were greater than those for negatively charged aluminum nanoparticles. Many factors influence the transport of nanoparticles in the environment, but size, charge, and agglomeration rate of nanoparticles in the transport medium are predictive of nanoparticle mobility in soil.