SEARCH

SEARCH BY CITATION

REFERENCES

  • Aldenberg T, Slob W. 1993. Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotoxicol Environ Saf 25: 4863.
  • Allen HE, Hansen DJ. 1996. The importance of trace metal speciation to water quality criteria. Water Environ Res 68: 4254.
  • Bodar CWM, Pronk MEJ, Sijm DTHM. 2005. The European Union risk assessment on zinc and zinc compounds: The process and the facts. Integr Environ Assess Manag 1: 301319.
  • Bossuyt BTA, De Schamphelaere KAC, Janssen CR. 2004. Using the biotic ligand model for predicting the acute sensitivity of cladoceran dominated communities to copper in natural surface waters. Environ Sci Technol 38: 50305037.
  • Clifford M, McGeer JC. 2009. Development of a biotic ligand model for the acute toxicity of zinc to Daphnia pulex in soft waters. Aquat Toxicol 91: 2632.
  • Crommentuijn T, Polder M, Sijm D, de Bruijn J, van de Plassche E. 2000. Evaluation of the Dutch environmental risk limits for metals by application of the added risk approach. Environ Toxicol Chem 19: 16921701.
  • Crommentuijn T, Polder MD, van de Plassche EJ. 1997. Maximum permissible concentrations and negligible concentrations for metals, taking background concentrations into account. Bilthoven (NL): National Institute of Public Health and the Environment. Report 601501 001.
  • De Schamphelaere KAC, Janssen CR. 2004a. Bioavailability and chronic toxicity of zinc to juvenile rainbow trout (Oncorhynchus mykiss): Comparison to other fish species and development of a biotic ligand model. Environ Sci Technol 38: 62016209.
  • De Schamphelaere KAC, Janssen CR. 2004b. Effects of dissolved organic carbon concentration source, pH, and water hardness on chronic toxicity of copper toxicity of copper to Daphnia magna. Environ Toxicol Chem 23: 11151122.
  • De Schamphelaere KAC, Lofts S, Janssen CR. 2005. Bioavailability models for predicting acute and chronic toxicity of zinc to algae, daphnids, and fish in natural surface waters. Environ Toxicol Chem 24: 11901197.
  • Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC. 2001. Biotic ligand model of the acute toxicity of metals, I: Technical basis. Environ Toxicol Chem 20: 23832396.
  • [EU] European Union. 2006. Risk assessment zinc metal—Environmental part: Submitted to the European Chemicals Bureau (Ispra, Italy) by the National Institute for Public Health and the Environment. Bilthoven (NL): EU. Final draft 5 September 2006.
  • Heijerick DG, De Schamphelaere KAC, Van Sprang PA, Janssen CR. 2005. Development of a chronic zinc biotic ligand model for Daphnia magna. Ecotoxicol Environ Saf 62: 110.
  • Janssen CR, Heijerick DG, De Schamphelaere KAC, Allen HE. 2003. Environmental risk assessment of metals: tools for incorporating bioavailability. Environ Int 28: 793800.
  • McLaughlin MJ, Smolders E. 2001. A rationale for the metalloregion approach to risk assessments for metals in soil: A case study for effects of zinc on microbial functions in soil. Environ Toxicol Chem 20: 26392643.
  • Neter J, Wasserman W, Kutner MH. 1990. Applied linear statistical models: Regression, analysis of variance, and statistical designs. 3rd ed. Boston (MA): Irwin Press. p 9921000.
  • Santore RC, Mathew R, Paquin PR, Di Toro D. 2002. Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and Daphnia magna. Comp Biochem Physiol C 133: 271285.
  • Schwartz M, Curtis P, Playle RC. 2004. Influence of natural organic matter source on acute copper, lead and cadmium toxicity to rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 23: 28892899.
  • Specht W. 2005. Evaluation of the biotic ligand model for predicting metal bioavailability and toxicity in SRS effluents and surface waters. Aiken (SC): Savannah River National Laboratory. Report WSRC-TR-2005-00377. 36 p.
  • Struijs J, Van de Meent D, Peijnenburg WJGM, Van den Hoop MAGT, Crommentuijn T. 1997. Added risk approach to derive maximum permissible concentrations for heavy metals: How to take into account the natural background levels. Ecotoxicol Environ Saf 37: 112118.
  • Sukola K, Wang F, Tessier A. 2005. Metal-sulfide species in toxic waters. Anal Chim Acta 528: 183195.
  • [USEPA] US Environmental Protection Agency. 1994. Use of the water effect ratio in water quality standards. Washington DC: USEPA. EPA-823-B-94-001.
  • Van Genderen E, Adams W, Cardwell R, van Sprang P, Arnold WR, Santore RC, Rodriguez PH. 2008. An evaluation of the bioavailability and aquatic toxicity attributed to ambient copper concentrations in surface waters from several parts of the world. Int Environ Assess Manag 4: 416424.
  • Van Genderen EJ, Ryan AC, Tomasso JR, Klaine SJ. 2005. Evaluation of acute copper toxicity to larval fathead minnows (Pimephales promelas) in soft surface waters. Environ Toxicol Chem 24: 408414.
  • Villavicencio G, Urrestarazu P, Carvajal C, De Schamphelaere KAC, Janssen CR, Torres JC, Rodriguez PH. 2005. Biotic ligand model prediction of copper toxicity to daphnids in a range of natural waters in Chile. Environ Toxicol Chem 24: 12871299.
  • Wood CM, Adams WJ, Ankley GT, Di Bona DR, Luoma SN, Playle RC, Stubblefield WA, Bergman HL, Erickson RJ, Mattice JS, Schlekat CE. 1997. Environmental toxicology of metals. In: BergmanHL, Doward-KingEJ, editors. Reassessment of metals criteria for aquatic life protection. Pensacola (FL): Society for Environmental Toxicology and Conservation. p 1330.