Modeling the Probability of Resource Use: The Effect of, and Dealing with, Detecting a Species Imperfectly



Resource-selection probability functions and occupancy models are powerful methods of identifying areas within a landscape that are highly used by a species. One common design/analysis method for estimation of a resource-selection probability function is to classify a sample of units as used or unused and estimate the probability of use as a function of independent variables using, for example, logistic regression. This method requires that resource units are correctly classified as unused (i.e., the species is never undetected in a used unit), or that the probability of misclassification is the same for all units. In this paper, I explore these issues, illustrating how misclassifying units as unused may lead to incorrect conclusions about resource use. I also show how recently developed occupancy models can be utilized within the resource-selection context to improve conclusions by explicitly accounting for detection probability. These models require that multiple surveys be conducted at each of a sample of resource units within a relatively short timeframe, but given the growing evidence from simulation studies and field data, I recommend that such procedures should be incorporated into studies of resource use.