SEARCH

SEARCH BY CITATION

Keywords:

  • Competition;
  • Corridor;
  • Density;
  • Distance;
  • Facilitation;
  • Genetic variation;
  • Insect;
  • Pollination;
  • Population size Seed set;
  • Species richness
  • For plant species ven der Meijden (1990)

Abstract. Habitat fragmentation affects both plants and pollinators. Habitat fragmentation leads to changes in species richness, population number and size, density, and shape, thus to changes in the spatial arrangement of flowers. These changes influence the amount of food for flower-visiting insects and the quantity and quality of pollinations.

Seed set in small populations is often reduced and genetic variation is expected but not always found to be low. The majority of studies show that low flower densities have reduced pollination success and higher inbreeding. Density effects are stronger than size effects.

Most studies concluded that species richness in flower-visiting insects is directly related to richness in plant species. However, the consequences of low insect species richness for pollination are not always clear, depending on the studied pollinator-plant relationship. The effects of the presence of simultaneously flowering species are highly dependent on the circumstances and may range from competition to facilitation. Other flowering plant species may play a role as stepping stones or corridor in the connection between populations. In the absence of stepping stones even short distances between populations act as strong barriers for gene flow.

We illustrate the present review paper with own data collected for three plant species, rare in The Netherlands: Phyteuma spicatum ssp. nigrum (Campanulaceae), Salvia pratensis (Labiatae) and Scabiosa columbaria (Dipsacaceae). The species differ in their breeding systems and in the assemblage of visitor species. Data are shown on the effects of population size on species richness with consequences for seed set. Effects of flower density and isolation on pollen exchange are given. Since plant reproduction depends on the behaviour of individual insects and not on the overall behaviour of the species, the examples all point to individual insects and extrapolate to effects at the species level.