Disturbance and forest dynamics along a transect from Andean rain forest to Patagonian shrubland

Authors


Abstract

Abstract. At ca. 40° S in northern Patagonia, Andean rain forests are replaced eastwards by woodlands and shrublands and eventually by steppe. Along this gradient we examined stand dynamics by analyzing tree population age structures and tree growth patterns. We also examined spatial and temporal characteristics of disturbance regimes by dating disturbances and mapping stands of differing disturbance history. From west to east, the ecological importance of earthquake-related disturbance decreases, whereas that of fire, logging, and livestock increases. Abrupt changes in rates of tree growth correspond with earthquakes in 1837, 1939 and 1960. In the mesic western forests earthquakes can result in massive new tree establishment on landslide-affected sites and increased rates of treefall.

Fire, however, is the more pervasive disturbance over most of the gradient and creates extensive even-aged patches dominated by the regionally dominant trees, Nothofagus and Austrocedrus. Although some lightning-ignited and aboriginal-set fires occurred in these forests prior to European settlement, much of the present forest structure may be attributed to the massive burning associated with European settlement of this area near the turn of the present century. In contrast to the settlement-related increase in fire frequency in the western forested district, at the woodland/steppe ecotone the demise of the native American population resulted in a decrease in fire frequency. Heavy browsing and grazing following fire can seriously impede post-fire tree regeneration. These preliminary results document the important influences of varying disturbance regimes along a major environmental gradient in creating landscape-scale vegetation patterns.

Ancillary